期刊文献+

多种搜索行为联合分析方法研究 被引量:1

Joint Analysis Method of Multiple Search Behaviors
下载PDF
导出
摘要 针对现有搜索行为分析方法只能分析单一类型搜索行为,无法有效获取用户兴趣的问题,提出多种搜索行为联合分析方法.通过使用M5模型对页面停留时间、鼠标点击次数、页面重访问次数及滑块移动次数4种类型的用户行为进行联合分析,从多个角度获取用户行为信息用于分析用户兴趣,并实现了对多种搜索行为构成的高维数据进行联合分析,同时满足了在线行为分析中对结果计算的实时性要求.实验表明该方法可以提供比Belkin方法更高的行为分析质量. Aiming at the fact that available search behavior analysis methods could only analyze one single type of search behavior, which leads to the problems that the user interest could not be effectively get, a joint analysis method of multiple search behaviors was proposed. By combining the analysis of page dwell time, mouse click times, page revisit times and slider move times using M5 model, clues from more angles other than one single type of user behavior were gained for user interest analysis, and joint analysis of high dimension data composed of multiple user behaviors was realized with timeliness ensured for online behavior analysis. Experiment results show that the proposed method can analyze the behaviors better than compared approaches.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第9期1249-1252,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61073062) 沈阳市科学技术计划项目(F11-264-1-35 F11-264-1-33) 中央高校基本科研业务费专项资金资助项目(N120304002)
关键词 搜索引擎 个性化搜索 用户行为分析 搜索行为特征 用户行为模型 search engine personalized search user behavior analysis search behavior character user behavior model
  • 相关文献

参考文献12

  • 1Case D 0. Looking for information-a survey of research oninformation seeking,needs and behavior [ M ]. Bradford :Emerald Group Publishing Limited,2012:3 - 18.
  • 2Shen S,Hu B,Chen W,et al. Personalized click modelthrough collaborative filtering [ C ] //Proceedings of the FifthACM International Conference on Web Search and DataMining. New York; ACM,2012 ;323 -332.
  • 3Kelly D,Belkin N J. Display time as implicit feedback :understanding task effects [ C ] //ACM SIGIR Conference onResearch and Development in Information Retrieval. NewYork:ACM,2004:377 -384.
  • 4Teevan J, Dumais S T, Horvitz E. Potential forpersonalization [ J ]. ACM Transactions on Computer-HumanInteraction,2010,17(1) :4.
  • 5Broder AX. A taxonomy of Web search [ J]. SIGIR Forum,2002,36(2) :3-10.
  • 6Jansen B J, Booth D L, Spink A. Determining theinformational,navigational,and transactional intent of Webqueries[ J]. Information Processing and Management,2008,44(3) :1251 -1266.
  • 7Bennett P N,White R W,Chu W,et al. Modeling the impactof short-and long-term behavior on search personalization[C ] //Proceedings of the 35 th International ACM SIGIRConference on Research and Development in InformationRetrieval. New York: ACM,2012 : 185 - 194.
  • 8Teevan J,Karlson A,Amini S,et al. Understanding theimportance of location, time, and people in mobile localsearch behavior [ C ]//Proceedings of the 13th InternationalConference on Human Computer Interaction with MobileDevices and Services. New York:ACM,2011:77 -80.
  • 9Yao T,Mei T,Ngo C W, ef al. Annotation for free: videotagging by mining user search behavior [ C ] //ACMMultimedia Conference. New York: ACM,2013 :977 -986.
  • 10Yeh N C,Lin J C C, Lu H P. Exploring users’ behavioralmodel in Web 2. 0 applications一the moderating effects ofhedonic versus utilitarian motivations [ C ] //American Con-ference on Information Systems. Atlanta : AIS, 2012 : 3.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部