期刊文献+

基于贝叶斯网络的HAZOP-LOPA集成分析与应用 被引量:4

Integrative Risk Analysis and Application of HAZOP-LOPA Based on Bayesian Networks Inference
下载PDF
导出
摘要 针对事件树、故障树等风险分析存在一定局限性的问题,提出了基于贝叶斯网络的HAZOPLOPA集成风险评估新思路.编制系统故障树,利用GeNIe软件将其映射成贝叶斯网络,运用贝叶斯网络双向推理进行故障预测和诊断,快速识别系统薄弱环节并确定为风险贝叶斯故障节点,结合HAZOP与LOPA对其进行风险集成分析,提出相应的独立防护层,根据防护层失效概率并参照半定量风险矩阵确定剩余风险等级.该风险评估模型在辽河石化公司催化裂化装置的反应再生系统中进行应用,结果证实该模型在复杂工艺信息不确定条件下,能有效提高风险评估的针对性、客观性与准确性. Considering that the event tree and fault tree analysis bear some disadvantages, a new integrative risk analysis of HAZOP-LOPA was proposed on the basis of Bayesian networks. The system fault tree was established and mapped into Bayesian networks by using GeNie software. Then fault prediction and diagnosis could be conducted by Bayesian networks two-side reason function, and it could rapidly identify the system weakness, which was chosen to be the Bayesian risk fault node. Integrative risk analysis was used by combining HAZOP with LOPA, putting forward the corresponding independent protective layer, and the residual risk level could be determined according to failure probability of protective layer and semi-quantitative risk matrix. This risk assessment model was then applied in the reactor regenerator system of RFCC equipment in Liaohe Petrochemical Industries Company, and the application results can verify the pertinence, objectivity and accuracy under the condition of uncertain information in complex system.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第9期1356-1359,共4页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(2013020137)
关键词 故障树 贝叶斯网络 防护层分析 催化裂化 风险分析 fault tree Bayesian networks layers of protection analysis catalytic cracking risk analysis
  • 相关文献

参考文献10

  • 1Langseth H, Portinale L. Bayesian networks in reliability [ J ].Reliability Engineering and System Safety,2007 ,92( 1 ) :92 -108.
  • 2Jesen F V. Bayesian networks and decision graphs[ M]. NewYork : Springer-Verlag ,2001:18 -28.
  • 3Muller A,Suhner M C,lung B. Formalization of a newprognosis model for supporting proactive maintenanceimplementation on industrial system [ J ]. ReliabilityEngineering and System Safety,2008,93(2) :234 -253.
  • 4Vander G L C. Bayesian belief networks:odds and ends[ J] .The Computer Journal, 1996,6(3) :97 - 113.
  • 5Hood C S, Ji C Y. Proactive network fault detection [ J ].IEEE Transaction on Reliability, 1997 ,46(3) :333 - 341.
  • 6Pearl J F. Propagation and structuring in belief networksf J].Artificial Intelligence, 1986,29 (3) :246.
  • 7Brooker P. Experts, Bayesian belief networks, rare events andaviation risk estimates [ J ]. Safety Science,2011,49 ( 8 ):1142 -1155.
  • 8白永忠,张广文,蒋军成.复合型工艺危害分析与控制技术的应用研究[J].中国安全生产科学技术,2013,9(1):85-91. 被引量:8
  • 9Hallowell M R, Gambatese J A. Construction safety riskmitigation [ J ]. Journal of Construction Engineering andManagement,2009,135(12) :1316 -1323.
  • 10Center for Chemical Process Safety. Layers of protectionanalysis-simplified process risk assessment [ M ]. NewYork: American Institute of Chemical Engineers,2001.

二级参考文献10

共引文献7

同被引文献41

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部