期刊文献+

Mars500志愿者健康状态中医监测数据分析 被引量:2

Analysis on TCM Monitoring Data of Healthy Status Collected from Mars500 Volunteers
下载PDF
导出
摘要 为研究航天员如何适应长期密闭环境对人体健康(生理、心理、精神)和机体功能的挑战,提出一种基于多标记学习的证候诊断模型。采用中医"望、闻、问、切"的方法,采集长期密闭环境下人体生命活动的状态数据,并运用数据挖掘方法研究、阐释其特点及变化规律。实验结果表明,该融合数据分类模型能达到80%的平均分类精度。 In order to study that spacemen how to adapt to challenges which longtime closed environment brings to human health(physiology,psychology,spirit)and bodily function,a differentiation model based on multi-label learning is proposed. This paper adopts"inspection,auscultation and olfaction,inquiry and pulse-taking"diagnose methods of Traditional Chinese Medicine(TCM)to collect human life activity state data in longtime closed environment. It uses data mining methods to study and explain its characteristics and varying patterns. Average precision of classification model built by fusion data reaches80% in the experiment.
出处 《计算机工程》 CAS CSCD 2014年第9期13-18,22,共7页 Computer Engineering
基金 国家自然科学基金资助项目(61273305)
关键词 航天 密闭环境 中医 数据挖掘 特征选择 spaceflight closed environment Traditional Chinese Medicine(TCM) data mining feature selection
  • 相关文献

参考文献15

  • 1Wang Yan,Ma Lizhuang, Liu Ping. Feature Selection and Syndrome Prediction for Liver Cirrhosis in Traditional Chinese Medicine [J ]. Computer Methods and Programs in Biomedicine,2009,95(3):249-257.
  • 2Peng Jing, Tang Changjie, Yang Dongqing, et al. Similarity Computing Model of High Dimension Data for Symptom Classification of Chinese Traditional Medicine [J]. Applied Soft Computing,2009,9(1):209-218.
  • 3Zhou X H,Li S L,Tian Feng,et al. Building a Disease Risk Model of Osteoporosis Based on Traditional Chinese Medicine Symptoms and Western Medicine Risk Factors [J]. Statistics in Medicine,2012,31(7):643-652.
  • 4Shao Huan,Li Guozheng. Symptom Selection for Multilabel Data of Inquiry Diagnosis in Traditional Chinese Medicine [J ]. Science China Information Sciences, 2011,41(11):1372-1387.
  • 5Yang J,Honavar V. Feature Subset Selection Using a Genetic Alogorithm [J]. IEEE Intelligent Systems and Their Applications,1998,13(2):44-49.
  • 6Meiri R, Zahavi J. Using Simulated Annealing to Optimize the Feature Selection Problem in Marketing Applications [J ]. European Journal of Operational Research,2006,171(3):842-858.
  • 7Dréo J, Siarry P. Continuous Interacting Ant Colony Alogorithm Based on Dense Heterarchy [J ]. Future Generation Computer Systems,2004,20(5):841-856.
  • 8You Mingyu,Liu Jiaming,Li Guozheng,et al. Embedded Feature Selection for Multi-label Classification of Music Emotions [J ]. International Journal of Computational Intelligence Systems,2012,5(4):668-678.
  • 9葛雷,李国正,尤鸣宇.多标记学习的嵌入式特征选择[J].南京大学学报(自然科学版),2009,45(5):671-676. 被引量:12
  • 10Tsoumakas G,Katakis I. Multi-label Classification: An Overview[J]. International Journal of Data Warehousing and Mining,2007,3(3):1-13.

二级参考文献15

  • 1李丹,李国正,陆文聪.用于药物活性预报的Co-Training方法[J].计算机科学,2006,33(12):159-161. 被引量:3
  • 2Schapire R E, Singer Y. Boostexter: A boosting-based system for text categorization. Machine Learning, 2000, 39 (2--3):135-168.
  • 3McCallum A. Multi-label text classification with a mixture model trained by EM. Working Notes of the AAAI' 99 Workshop on Text Learning. Orlando: AAAI, 1999.
  • 4Boutell M R, Luo J, Shen X, et al. Learning multi-label scene classification. Pattern Recognition, 2004, 37(9): 1757-1771.
  • 5Yin Z, Zhou Z H. Multi-label dimensionality reduction via dependency maximization. Proceedings of the 23^rd AAAI Conference on Artificial Intelligence, Chicago, IL: AAAI, 2008, 1503-1505.
  • 6Yu K, Yu S P, Tresp V. Multi-label informed latent semantic indexing. Proceedings of the 28^th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY:ACM, 2005, 258--265.
  • 7Moody J, Utans J. Principled architecture selection for neural networks: Application to corporate bond rating prediction. Moody J E, Hanson S J, Lippmann R P. Neural Information Processing Systems 4. Morgan Kaufmann Publishers, Inc. 1992, 683-690.
  • 8Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003, 3:1157-1182.
  • 9Li G Z, Yang J. Feature selection for multiclass problems using support vector machines. Proceedings of the 8^th Pacific Rim International Conference on Artificial Intelligence. Auckland: PRICAI, 2004, 292-300.
  • 10:i G Z, Meng H H. Asymmetric bagging and feature selection for activities prediction of drug molecules. BMC Bioinformatics, 2008, 9 (S6) : S7.

共引文献11

同被引文献36

引证文献2

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部