摘要
线性鉴别分析(LDA)小样本问题的已有解决方法在构造最优投影子空间时未完整利用LDA的4个信息空间,为此,提出一种基于二维主成分分析(2D-PCA)的两级LDA人脸识别方法。采用减法运算对样本类内散度矩阵和类间散度矩阵的特征值矩阵求逆,以解决小样本问题,并连续应用Fisher准则和修改后的Fisher准则连接2个投影子空间,获取包含LDA的4个信息空间的最优投影方向,利用2D-PCA对输入样本做预处理,以减少计算复杂度。在ORL和YALE人脸库上的实验结果表明,该方法虽然训练时间略有增加,但识别率分别为92.5%和95.8%,优于其他常用LDA算法。
Aiming at the existing algorithms which do not use the whole four information space of Linear Discriminant Analysis(LDA)in solving the small sample size problem,a two-stage LDA face recognition algorithm based on Two Dimension Principle Component Analyses(2D-PCA)is proposed. The small sample size problem is solved by a subtraction to estimate the inverse matrix of the eigenvalues matrix of the singular with-class scatter matrix and betweenclass scatter matrix. Thus,the projection subspaces resulting from continuously using the traditional Fisher criterion and a modified Fisher criterion,are concatenated to obtain the optimal projection space including whole four information space of LDA. To reduce the computational complexity,the2D-PCA is used to preprocess on input samples. The recognize rates of the proposed algorithm on ORL and YALE database are92.5% and95.8% which are higher than other LDA algorithms despite the slightly increase of training time.
出处
《计算机工程》
CAS
CSCD
2014年第9期243-247,共5页
Computer Engineering
关键词
线性鉴别分析
直接线性鉴别分析
二维主成分分析
小样本问题
人脸识别
特征提取
Linear Discriminant Analysis(LDA)
Direct LDA(DLDA)
Two Dimension Principle Component Analysis(2D-PCA)
small sample size problem
face recognition
feature extraction