期刊文献+

基于2D-PCA的两级LDA人脸识别方法 被引量:3

Two-stage Face Recognition Method Based on Two Dimension Principle Component Analysis
下载PDF
导出
摘要 线性鉴别分析(LDA)小样本问题的已有解决方法在构造最优投影子空间时未完整利用LDA的4个信息空间,为此,提出一种基于二维主成分分析(2D-PCA)的两级LDA人脸识别方法。采用减法运算对样本类内散度矩阵和类间散度矩阵的特征值矩阵求逆,以解决小样本问题,并连续应用Fisher准则和修改后的Fisher准则连接2个投影子空间,获取包含LDA的4个信息空间的最优投影方向,利用2D-PCA对输入样本做预处理,以减少计算复杂度。在ORL和YALE人脸库上的实验结果表明,该方法虽然训练时间略有增加,但识别率分别为92.5%和95.8%,优于其他常用LDA算法。 Aiming at the existing algorithms which do not use the whole four information space of Linear Discriminant Analysis(LDA)in solving the small sample size problem,a two-stage LDA face recognition algorithm based on Two Dimension Principle Component Analyses(2D-PCA)is proposed. The small sample size problem is solved by a subtraction to estimate the inverse matrix of the eigenvalues matrix of the singular with-class scatter matrix and betweenclass scatter matrix. Thus,the projection subspaces resulting from continuously using the traditional Fisher criterion and a modified Fisher criterion,are concatenated to obtain the optimal projection space including whole four information space of LDA. To reduce the computational complexity,the2D-PCA is used to preprocess on input samples. The recognize rates of the proposed algorithm on ORL and YALE database are92.5% and95.8% which are higher than other LDA algorithms despite the slightly increase of training time.
出处 《计算机工程》 CAS CSCD 2014年第9期243-247,共5页 Computer Engineering
关键词 线性鉴别分析 直接线性鉴别分析 二维主成分分析 小样本问题 人脸识别 特征提取 Linear Discriminant Analysis(LDA) Direct LDA(DLDA) Two Dimension Principle Component Analysis(2D-PCA) small sample size problem face recognition feature extraction
  • 相关文献

参考文献12

  • 1Sharma A, Paliwal K K. A New Perspective to Null Linear Discriminant Analysis Method and Its Fast Implementation Using Random Matrix Multiplication with Scatter Matrices[J]. Pattern Recognition,2012,45 (6):2205-2213.
  • 2Sharma A, Paliwal K K. A Two-stage Linear Discriminant Analysis for Face-recognition [J]. Pattern Recognition Letters,2012,33(9):1157-1162.
  • 3Belhumeur P N,Hespanha J P,Kriegman D J. Eigenfaces vs. Fisherfaces:Recognition Using Class Specific Linear Projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 4Yu Hua,Yang Jie. A Direct LDA Algorithm for Highdimensional Data with Application to Face Recognition [J]. Pattern Recognition,2001,34(10):2067-2070.
  • 5余冰,金连甫,陈平.利用标准化LDA进行人脸识别[J].计算机辅助设计与图形学学报,2003,15(3):302-306. 被引量:22
  • 6宋晓宁,郑宇杰,杨静宇,吴小俊.对称零空间准则下的LDA特征抽取方法[J].计算机辅助设计与图形学学报,2009,21(3):400-405. 被引量:1
  • 7张燕平,窦蓉蓉,赵姝,曹振田.基于集成学习的规范化LDA人脸识别[J].计算机工程,2010,36(14):144-146. 被引量:6
  • 8Guo Yaqian,Hastie T,Tibshirani R. Regularized Linear Discriminant Analysis and Its Application in Microarrays [J]. Biostatistics,2007,8(1):86-100.
  • 9Sharma A,Paliwal K K. Regularisation of Eigenfeatures by Extrapolation of Scatter-matrix in Face-recognition Problem[J]. Electronics Letters,2010,46 (10):682- 683.
  • 10Gao Hui,Davis J W. Why Direct LDA is not Equivalent to LDA [J]. Pattern Recognition,2006,39 (5):1002- 1006.

二级参考文献29

  • 1王琳,冯正进,刘成良,崔光亮.集成多分类器的人脸识别[J].计算机工程,2004,30(17):3-4. 被引量:1
  • 2王宇博,艾海舟,武勃,黄畅.人脸表情的实时分类[J].计算机辅助设计与图形学学报,2005,17(6):1296-1301. 被引量:14
  • 3武宇文,刘宏,查红彬.基于特征分组加权聚类的表情识别[J].计算机辅助设计与图形学学报,2005,17(11):2394-2401. 被引量:11
  • 4Kirby M, Sirovich L. Application of the Karhunen-Loeve procedure for the characterization of human faces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103-108
  • 5Levy A, Lindenbaum M. Sequential Karhunen-Loeve basis extraction and its application to images [J]. IEEE Transactions on Image Processing, 2000, 9(8): 1371-1374
  • 6Belhumeur P N, Hespanha J P, Kriengmanl D J. Eigenfaces vs Fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
  • 7Swets D L, Weng J. Using discriminant eigenfeatures for image retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836
  • 8Chen L F, Liao H Y M, Lin J C, et al. A new LDA-based face recognition system which can solve the small sample size problem [J]. Pattern Recognition, 2000, 33 (10) : 1713- 1726
  • 9Huang R, Liu Q S, Lu H Q, et al. Solving the small sample size problem of LDA [C]//Proceedings of International Conference on Pattern Recognition, Quebec City, 2002: 29- 32
  • 10Yang J, Yang J Y. Why can LDA be performed in PCA transformed space [J]. Pattern Recognition, 2003, 36 (2) : 563-566

共引文献26

同被引文献20

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部