期刊文献+

GHR—基于共享模型的多标记学习方法

下载PDF
导出
摘要 阐述了什么是多标记学习框架GHR及其研究进展,并对GHR和LGHR进行了分析,通过实验得出:LGHR能够有效地利用标签之间的关系,提高学习的性能,优于其他几种典型的多标记学习方法。
作者 吕素峰
出处 《内蒙古科技与经济》 2014年第16期50-51,54,共3页 Inner Mongolia Science Technology & Economy
  • 相关文献

参考文献16

  • 1S.-J.Huang,Y.Yu,and Z.H.Zhou.Multilabel Hypothesis Reuse[C].In Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,Beijing,China,2012.
  • 2M.-L.Zhang,and Z.-H.Zhou.ML-kNN:A lazy learning approach to multi-label learning[J].Pattern Recognition,2007,40 (7):2038-2048.
  • 3R.Schapire,and Y.Singer.BoosTexter:a boosring-based system for text categorization[J].Machine Learning,2000,39 (2/3):135 - 168.
  • 4M.R.Boutell,J.Luo,X.Shen,and C.M.Brown.Learning multi-label scene classification[J].Pattern Recognition,2004,37(9):1757-1771.
  • 5A.Elisseeff,and J.Weston.A kernel method for multi-labelled classification[C].In Advances in Neural Information Processing Systems,Cambridge,MA,2002.
  • 6J.Read,B.Pfahringer,G.Holmes,and E.Frank.Classifier chains for multi-label classification[J].Machine Learning,2011,85 (3):333 -359.
  • 7S.Ji,I.Tang,S.Yu,and J.Ye.A sharedsubspace learning framework for mult-label classification[J].ACM Transactions on Knowledge Discovery from Data,2010,4(2):1-29.
  • 8G.Tsoumakas,I.Katakis,and I.Vlahavas.Mining multi-label data[M].Data Mining and Knowledge Discovery Handbook,part 6,O.Maimon,L.Rokach (Ed.),Springer,2nd edition,2010.
  • 9G. Tsoumakas, and I. Vlahavas. Random k- la- belsets: an ensemble method for multilabel clas- sification[C]. In Proceedings of the 18th Euro- pean Conference on Machine Learning, Warsaw, Poland, 2007.
  • 10E.Hüllermeier,J.Fürnkranz,W.Cheng,and K.Brinker.Label ranking by learning pairwise preferences[J].Artificial Intelligence,2008,172:1897-1916.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部