期刊文献+

大规模网络的三角形模体社区发现模型 被引量:4

A model for community detection based on triangular motifs in large-scale networks
下载PDF
导出
摘要 研究表明将边表示的网络转换为三角形模体表示形式,可以有效解决基于模型社区发现方法由网络规模庞大带来的计算瓶颈问题.提出一个三角形模体社区发现模型MCDTM(a Model for Community Detection based on Triangular Motifs),其将网络表示为一系列三角形模体,利用categorical分布对各三角形模体的生成过程建模,用最大似然参数估计方法给出参数估计的推理过程,根据参数估计结果可得节点、边及三角形模体的社区隶属度.人工网络和实际网络上的实验证明MCDTM模型可快速准确地发现网络的潜在结构. The Mixed Membership Stochastic Blockmodel(MMSB)is well known to be flexible to model latent structures of a network.But its complexity costs too much due to edge representations.Recently,two models are provided to improve the MMSB model by representing networks as triangular motifs,which demonstrated that representing networks as a bag of triangular motifs could resolve computational bottlenecks of model-based approaches incurred by representing networks as edges.The two models used all the triangular motifs transferred from1-edges and 0-edges as input and assumed there were link patterns between any two communities,which added the inference and computing complexity.In this paper,a model for community detection based on triangular motifs(MCDTM)is provided,which uses the triangular motifs transferred from1-edges as input and only considers the link patterns within a community.Before we run the model,we should transfer 1-edges to a bag of triangular motifs.Then these motifs are sampled from all the motifs transferred from 1-edges and only sampled motifs are used as input.In addition,the model assumes there are links within a community.These two assumptions make the model be able to deal with large networks.The generative process of each triangular motif obeys a categorical distribution,and the generative proba-bility of a triangular is the sum of the probability generating all the triangular edges in all communities.Each motif is generated independently.A maximization likelihood estimation method is used to infer the model parameters,and the memberships of nodes,edges and triangular motifs are able to be captained in terms of the results of parameters.Tests on synthetic networks and real large-scale networks demonstrated the MCDTM model can detect latent structures of the network fast and accurately.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期466-473,共8页 Journal of Nanjing University(Natural Science)
基金 中央高校基本科研业务费专项资金(2014YJS039) 河北省高等学校科学技术研究青年基金(2011143)
关键词 三角形模体 大规模网络 重叠社区发现 EM(Expectation Maximization)算法 triangular motif large scale networks overlapping community EM(Expectation Maximization)algorithm
  • 相关文献

参考文献17

  • 1Airodi E M, Blei D M, Fienberg S E, et al. Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 2008, 9: 1981-2014.
  • 2Ho Q R, Yin J M, Eric X P. On triangular versus edge representations - Towards scalable modeling of networks. In: Advances in Neural Information Processing Systems, United States: Curran Associates Inc., 2012: 2141-2149.
  • 3Yin J M, Ho Q R, Eric X P. A scalable approach to probabilistic latent space inference of large-scale networks. In: Advances in Neural Information Processing Systems, United States: Curran Associates Inc., 2013: 422-430.
  • 4Gopalan P K, Mimno D, Gerrish S M, et al. Scalable inference of overlapping communities. In: Advances in Neural Information Processing Systems, United States: Curran Associates Inc., 2012: 2258-2266.
  • 5Gopalan P K, Blei D M. Efficient discovery of overlapping communities in massive networks. Proceedings of the National Academy of Sciences, United States, 2013, 110(36): 14534-14539.
  • 6Gopalan P K, Wang C, David B. Modeling overlapping communities with node popularities. In: Advances in Neural Information Processing Systems, United States: Curran Associates Inc., 2013: 2850-2858.
  • 7Ren W, Yan G Y, Liao X P, et al. Simple probabilistic algorithm for detecting community structure. Physical Review E, 2009, 79: 036111.
  • 8Ball B, Karrer B, Newman M E J. Efficient and principled method for detecting communities in network. Physical Review, 2011, 84:036103.
  • 9Hofman J M, Wiggins C H. Bayesian approach to network modularity. Physical Review Letters, 2008, 100(25): 258701.
  • 10Nowicki K, Snijders T. Estimation and prediction for stochastic block structures. Journal of American Statistical Association, 2001, 96(455):1077-1087.

同被引文献31

  • 1Zhao Y, Levina E, Zhu J. Community extraction for social networks. Proceedings of the National Academy of Sciences, 2011,108 (18) : 7321 -- 7326.
  • 2Serrano M A, Bogufd M, Sagus F. Uncovering the hidden geometry behind metabolic networks. Molecular Biosystems,2012,8(3) :843--850.
  • 3Pothen A, Simon H D, I.iou K P. Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications, 1990,11 (3) : 430 -- 452.
  • 4Girvan M,Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences,2002,99(12) : 7821--7826.
  • 5Reichardt J, Bornholdt S. Detecting fuzzy community structures in complex networks with a Potts model. Physical Review Letters, 2004, 93(21) :218-- 701.
  • 6Reichardt J,Bornholdt S. Statistical mechanics of community detection. Physical Review E, 2006, 74(1) :016--110.
  • 7Wu F, Huberman B A. Finding communities in linear time: A physics approach. The European Physical Journal B - Condensed Matter and Complex Systems, 2004,38 (2) : 331-- 338.
  • 8Newman M E J. Fast algorithm for detecting community structure in networks. Physical Review E,2004,69(6) :066--133.
  • 9Boettcher S, Percus A G. Optimization with extremal dynamics. Complexity, 2002, 8 ( 2 ) : 57--62.
  • 10Zhou T, Bai W J, Cheng L J, et al. Continuous extremal optimization for Lennard-Jones clusters. Physical Review E, 2005, 72 ( 1 ).. 016 702.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部