期刊文献+

自适应全局—局部集成判别分析

Adaptive integrated global and local discriminant analysis
下载PDF
导出
摘要 将数据集进行合理的维数约简,对于提高一些机器学习算法的效率起着至关重要的影响.本文提出了一种自适应全局—局部集成判别分析算法(Adaptive integrated global and local discriminant analysis,AIGLD).AILGD利用数据集的全局判别结构和局部判别结构,将线性判别算法(Linear Discriminant Analysis,LDA)与提出的局部判别算法自适应的相结合.在UCI数据库及标准人脸数据库上的识别实验证明,相比于现有算法,AIGLD具有更高的识别准确率及更强的鲁棒性. In computer vision and information retrieval fields,many applications,such as appearance-based image recognition,often confront high-dimensional data samples.The curse of high dimensionality is usually a major cause of limitations of many machine learning algorithms.Hence,it is desired to consider methods of feature extraction(or dimensionality reduction)which are able to find the low-dimensional and compact representations for the high-dimensional data points.The subspace learning algorithm is one of the most popular feature extraction methods.Supervised subspace learning algorithms usually achieve better performances than unsupervised ones.And supervised subspace learning algorithms can be divided into two categories,the global structures based discriminator,such as linear discriminative analysis(LDA),and the local structures based methods,such as marginal Fisher analysis(MFA).From the experiments on image recognition,we can find that the global structures based discriminator and the local structures based discriminator are suitable for different feature extraction tasks.Hence,we hope to seek a discriminative analysis method which can combine the global structures and localstructures of data sets together.Inthispaper,a new supervised extraction method,called adaptive integrated global and local discriminant analysis(AIGLD),is proposed.The AIGLD algorithm combines the global structure based discriminator(namely,Linear Discriminant Analysis,LDA)with a proposedlocal structure based discriminator together so that it can use both of the global and the local discriminant information of data sets simultaneously.Compared with LDA and the existing local structure based discriminators,AIGLD is capable of feature extraction for different types of data sets.Moreover,an adaptive method for choosing the parameter which is used the balance the effect of local and global discriminators has also been pro-posed.This method is much more efficient than the classical method for parameters selections,namely cross validation.The efficiency of the proposed algorithm is demonstrated by extensive experiments using UCI data sets and benchmark face image data sets including ORL database and CMU PIE database.And the experimental results show that IGLD outperforms other classical and state of art algorithms.
作者 魏莱
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期517-525,共9页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61203240) 上海市科研创新项目(14YZ102)
关键词 人脸识别 维数约简 全局结构 局部结构 face recognition dimensionality reduction global structure local structure
  • 相关文献

参考文献22

  • 1Wei L, Xu F. Local CCA alignment and its application. Neurocomputing, 2012, 89(15): 78-88.
  • 2Ehsan Z B, Massimo P, Richard Y D X. A discriminative prototype selection methods for graph embed-ding. Pattern Recognition, 2013, 46(6): 1648-1657.
  • 3Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997: 19 (7): 711-720.
  • 4Zhi X B, Fan J L, Zhao F. Fuzzy linear siscriminant analysis-guided maximum entropy fuzzy clustering algorithm. Pattern Recognition, 2013, 46(6): 1604-1615.
  • 5He X, Yan S, Hu Y, et al. Face Recognition Using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27: 328-340.
  • 6Yan S, Xu D, Zhang B, et al. Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007, 29(1):40-51.
  • 7魏莱,王守觉,徐菲菲,王睿智.近邻边界Fisher判别分析[J].电子与信息学报,2009,31(3):509-513. 被引量:6
  • 8UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/, 2007-01-01.
  • 9Ren Y. Local and global structure preserving based feature selection. Neurocomputing, 2012, 89: 147-157.
  • 10Peng X, Xu D. A local information-based feature-selection algorithm for data regression. Pattern Recognition, 2013. 46(9): 2519-2530.

二级参考文献18

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2Jolliffe I T. Principal Component Analysis[M]. New York:Springer-Verlag, 1986, 10.
  • 3Fukunnaga K. Introduction to Statistical Pattern Recognition[M]. New York: Academic Press, 1991, 20.
  • 4Martinez A M and Kak A C. PCA versus LDA[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233.
  • 5Seung H S and Lee D D. The manifold ways of perception[J]. Science, 2000, 290(5500): 2268-2269.
  • 6Tenenbanm J B, De Silva V, and Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 7Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 8Belkin M and Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]. Advances in Neural Information Processing System, Vancouver, British Columbia, Canada, Dec. 3-8, 2001: 585-591.
  • 9He X, Yan S, Hu Y, Niyogi P, and Zhang H. Face recognition using laplacianfaces[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 10Chen H T, Chang H W, and Liu T L. Local discriminant embedding and its variants[C]. In Proceeding of International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 20-25, 2005: 846-853.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部