期刊文献+

聚己内酯(PCL)多孔亚微米纤维的制备

Fabrication of Poly (ε-caprolactone) Porous Sub-microfibers by Electrospinning
下载PDF
导出
摘要 以DMF、丙酮、二氯甲烷和丙酮/二氯甲烷为溶剂,通过静电纺丝方法制备PCL亚微米纤维.通过SEM观察纤维形貌及其孔径大小,通过N2吸附-脱附曲线计算纤维的比表面积,通过拉伸实验测试纤维的力学性能.实验结果表明:以单一DMF、丙酮为溶剂制备得到表面光滑无孔亚微米纤维.而以二氯甲烷为溶剂无法制备连续的纤维.以丙酮/二氯甲烷为溶剂制备得到直径为0.86±0.14μm、孔径大小为65.0±17.5nm,比表面积为21.15m2/g的亚微米纤维.相比较无孔纤维,多孔PCL亚微米纤维的拉伸强度和杨氏模量略有下降,而断裂伸长率有所增加,主要是因为拉伸过程中,多孔纤维发生一定程度的收缩.PCL亚微米纤维表面的多孔结构有利于细胞的黏附与生长,因而有望作为组织工程支架材料. PCL sub--microfibers were prepared by electrospinning using DMF, acetone, dichlorometha- neas and acetone/ dichloromethaneas as solvent. The fiber diameter and surface morphology was studied using scanning electron microscopy (SEM), specific surface area was calculated by N2 adsorption/desorp- tion isotherms and mechanism property was measured by tensile experiment. The results show that the sub--microfibers with smooth surface were prepared using DMF or acetone as single solvent, and spinning was very difficult using dichloromethaneas as solvent. However, PCL porous sub--microfibers with diam- eter of 0.86±0.14 μm, mesopores of 65.0±17.5 nm and specific surface area of 21.15 m2/g were pre- pared using acetone/dichloromethaneas as solvent. Compared with PCL sub--microfibers, tensile strength and Young's modulus of PCL porous sub--microfibers were slightly decreased, and the elongation at break was increased. This was attributed to the pore was shrunk during drawing. Due to the porous struc- ture, this special PCL fibrous membrane would be in favor of cell adhesion and growth, so they are expec- ted to be a very promising tissue engineering scaffold.
出处 《德州学院学报》 2014年第4期48-51,共4页 Journal of Dezhou University
基金 福建省自然科学基金(2012D129 2012N0027) 南平市科技局项目(N2012Z06(2)) 福建省教育厅JK类项目(JK2009051)
关键词 静电纺丝 聚己内酯 多孔纤维 electrospinning poly (ε-caprolactone) porous fiber
  • 相关文献

参考文献10

  • 1唐勇红,杨庆,岑莲,郯志清,沈新元.静电纺制备的PLLA/PCL复合支架性能及细胞相容性[J].高分子材料科学与工程,2010,26(9):64-67. 被引量:6
  • 2Lumelsky Y,Zoldan J,Levenberg S,et al.Porous Polycaprolactone-polystyrene Semi-interpenetrating Polymer Networks Synthesized within High Internal Phase Emulsions[J].Macromolecules,2008,41 (4):1469-1474.
  • 3Holzwarth J M,Ma P X.Biomimetic nanofibrous scaffolds for bone tissue engineering[J].Biomaterials,2011,32(36):9622-9629.
  • 4Huang Z M,Zhang Y Z,Kotaki M,etal.A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J].Composites Science and Technology,2003,63(15):2223-2253.
  • 5Li D,Xia Y.Electrospinning of nanofibers:Reinventing the wheel[J].Advanced Materials,2004,16 (14):1151-1170.
  • 6Thorvaldsson A,Stenhamre H,Gatenholm P,et al.Electrospinning of Highly Porous Scaffolds for Cartilage Regeneration[J].Biomacromolecules,2008,9(3):1044-1049.
  • 7Sill T J,von Recum H A.Electrospinning:Applications in drug delivery and tissue engineering[J].Biomaterials,2008,29(13):1989-2006.
  • 8Lee K H,Kim H Y,Khil M S,et al.Characterization of nano-structured poly (ε-caprolactone) nonwoven mats via electrospinning[J].Polymer,2003,44 (4):1287-1294.
  • 9Croisier F,Duwez A S,Jerome C,et al.Mechanical testing of electrospun PCL fibers[J].Acta Biomaterialia,2012,8(1):218-224.
  • 10Seo Y-A,Pant H,Nirmala R,et al.Fabrication of highly porous poly (ε-caprolactone) microfibers via electrospinning[J].Journal of Porous Materials,2012,19(2):217-223.

二级参考文献8

  • 1WANG X J, LI Y B, WEI J. Development of biomimetic nanohydroxyapatite ( hexamethlene adipamide ) composites [ J ]. Biomaterials, 2002, 23 : 4787-4792.
  • 2LUMELSKY Y, ZOLDANO J. Porous polycaprolactone-polystyrene semi-interpenetrating polymer networks synthesized within high internal phase emulsions [J]. Macromolecules, 2008, 41: 1469- 1474.
  • 3PHAM Q P, SHARMA U, MIKOS A G. Electrospun poly(e-caprolactone ) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellularinfiltration[J]. Biomacromolecules, 2006, 7: 2796-2805.
  • 4JUNG Y, MIN S A B. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly (L- lactide-co-3-caprolaetone) [J]. Biomaterials, 2008, 29 : 4630-4636.
  • 5KIM C H, KHIL M S, KIM H Y. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation[J]. Biomed. Mater. Res. B Appl. Biomater. , 2006, 78B: 283-290.
  • 6ZENG J, CHEN X S, XU X Y. Ultrafine fibers electrospun from biodegradable polymer[J].J. Appl. Polym. Sci., 2003, 89: 227- 231.
  • 7LEE K H, KIM H Y, KHIL M S. Characterization of nanostructured poly (ε-caprolactone) nonwoven mats via electrospining [J]. Polymer, 2003, 44: 1287-1294.
  • 8LI S M, MCCARTHY S. Influence of crystallinity and stereochemist ry on the enzymatic degradation of poly ( lactide ) s [ J ]. Macromolecules, 1999, 32: 4454-4456.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部