期刊文献+

半对偶化对和半对偶化双模的一个刻画(英文)

SEMIDUALIZING PAIR AND A CHARACTERIZATION OF SEMIDUALIZING BIMODULES
下载PDF
导出
摘要 在这篇文章中,我们引入并研究了Artin-代数上的半对偶化模对,它推广了由Miyashita定义的倾斜模对的概念.一方面,我们把有关半对偶化模的相关结论推广到了半对偶化模对上。另一方面在任意结合环R上,我们给出了半对偶化模的一个刻画. In this note,we introduce and investigate a semidualizing pair over an Artin algebra,which extends the notion of tilting pair introduced by Miyashita.We extend some conclusions about semidualizing module to semidualizing pair.On the other hand,we give a characterization of a semidualizing module over any associative ring.
出处 《南京大学学报(数学半年刊)》 CAS 2014年第1期9-21,共13页 Journal of Nanjing University(Mathematical Biquarterly)
关键词 半对偶化对 倾斜模 Wakamatsu-倾斜模 自正交 semidualizing pair, tilting module Wakamatsu tilting module selforthogonal
  • 相关文献

参考文献17

  • 1Bazzoni S. A Characterization of n-cotilting and n-tilting Modules. Journal of Algebra, 2004, 273 359-372.
  • 2Enochs E E and Jenda O M G. Relative Homological Algebra. Berlin, New York: De Gruyter, 2000.
  • 3Foxby H -B. Gorenstein Modules and Related Modules. Math. Scand., 1972, 31:267-284.
  • 4Golod E S. C-dimension and Generalized Perfect Ideals. Trudy Mat. Inst. Steklov, 1984, 165 62-66.
  • 5G6bel R and Trlifaj J. Approximations and Endomorphism Algebras of Modules. Berlin, New York De Gruyter, 2006.
  • 6Holm H and Jcrgensen P. Semi-dualizing Modules and Related Gorenstein Homologica Dimensions J. Pure Appl. Algebra, 2006,205(2): 423-445.
  • 7Holm H and White D. Foxby Equivalence over Associative Rings. J.Math.Kyoto Univ., 2008,47 781-808.
  • 8Miyashita Y. Tilting Modules Associated with a Series of Idempotent Ideals. J. Algebra, 2001,238 485-501.
  • 9Mantese F and Reiten I. Wakamatsu Tilting Modules. 3.Algebra, 2004, 278: 532-552.
  • 10Sather-Wagstaff S, Sharif T and White D. AB-context and Stabiity for Gorenstein Flat Modules with Respect to Semidualizing Modules. Algebra and Representation Theory, DOI 10.1007/s10468- 009-9195-9.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部