期刊文献+

冲击环境下单部件可修系统的最优更换策略 被引量:2

OPTIMIZING REPAIR-REPLACEMENT POLICY FOR A SINGLE-COMPONENT REPAIRABLE SYSTEM UNDER SHOCK ENVIRONMENT
下载PDF
导出
摘要 在假定的修理过程为α-幂过程的基础上,利用马尔科夫过程和拉普拉斯变换求出冲击环境下单部件可修系统的可用度、系统故障频度等可靠性指标,并通过更新报酬定理求出系统的长期运行下单位时间的平均成本率函数的数学表达式,以分析方法和数值方法证明最优更换策略的存在和唯一性;最后,通过数值例子证明我们导出的结论的正确性,并在所有参数都给定的条件下,通过数值例子求出系统的最优更换策略. A one-component repairable system under Poisson shock is considered.The system's failure may be due to external shocks.The shocks arrive according to a Poisson process.Whenever the magnitude of a shock is larger than a pre-specified threshold,the system fails.Assuming that the repair time of the system is α-power process,the system availability and the rate of occurrence of failures etc.are derived to indicate the importance of the reliability.The paper aims at the optimized number of failures of the system before a replacement is carried out.The explicit expression of the expected long term running cost rate is derived and the corresponding optimal policy is determined analytically and numerically.A numerical example is given to illustrate the theoretical results for the proposed model.
出处 《南京大学学报(数学半年刊)》 CAS 2014年第1期86-98,共13页 Journal of Nanjing University(Mathematical Biquarterly)
基金 国家自然科学基金资助项目(71173109) 中央高校基础研究基金资助项目(Y0201100265) 国家大学生创新创业训练计划资助项目(121030771)
关键词 Poisson冲击 向量马尔科夫过程 α-幂过程 最优更换策略 Poisson shock Vector Markov process α-power process Optimal Replacement policy
  • 相关文献

参考文献21

  • 1Barlow, R E and Proschan F. Statistical Theory of Reliability and Life Testing: Probability Models. New York: Hot,Rinehart and Winston,Inc,1975.
  • 2Shanthikumar J G and Sumita U. Distribution Properties of the System Failure Time in a GenerM Shock Model. Adv. Appl. Prob. ,1984,16: 363-377.
  • 3Wu Q T and Wu S M. Reliability Analysis of Two-unit Cold Standby Repairable Systems under Poisson Shocks. Appl. Math. Comput., 2011,218(1):171-182.
  • 4Wu Q T. Reliability Analysis of a Cold Standby System Attacked by Shocks. Appl. Math. Comput., 2012,218(23):11654-11673.
  • 5Wu Q T and Zhang J. A Bivariate Replacement Policy for a Cold Standby System under Poisson Shocks. Amer. J. Math. Manage. Sci., 2013, 32(3): 145-177.
  • 6吴清太,唐加山.泊松冲击下冷贮备可修系统的可靠性分析[J].数理统计与管理,2012,31(1):149-156. 被引量:11
  • 7Lam Y and Zhang Y L. A Shock Model for the Maintenance Problem of a Repairable System Comput. Oper. Res., 2004,31(11): 1807-1820.
  • 8Li Z H and Zhao P. Reliability Analysis on the δ-shock Model of Complex Systems. IEEE Trans. Reliab. ,2007,56 (2): 340-348.
  • 9Tang Y Y and Lam Y. A δ-shock Maintenance Model for a Deteriorating System. Euro. J. Oper. Res., 2006, 168:540-556.
  • 10Barlow R E and Proschan F. Mathematical Theory of Reliability. New York: Wiley,1975.

二级参考文献23

  • 1Barlow R E, and Proschan F. Statistical Theory of Reliability and Life Testing: Probability Models [M]. New York: Hot, Rinehart and Winston, Inc., 1975.
  • 2Shanthilumar J G, and Sumita U. General shock models associated with correlated renewal sequences [J]. J. of Appl. Prob., 1983, 20(3): 600-614.
  • 3Shanthilumar J G, and Sumita U. Distrubution properties of the system failure time in a general shock model [J]. Adv. Appl. Prob., 1984, 16(2): 363-377.
  • 4Wu Q T, Tang J S. Reliability Evaluation for One Class of Cold Standby System under Poisson Shock [Z]. preprint, 2010.
  • 5Lam Y.A geometric process maintenance model[J].Southeast Asian Bull Math,2003,27:295.
  • 6Tang Y Y,Liu Y P.An α-power process maintenance model for a deteriorating system[J].J Sichuan Univ:Nat Sci Ed,2007,44(3)(in press)
  • 7Braun W J,Li W,Zhao Y Q.Properties of geometric and related processes[J].Naval Res Logist,2005,52:607.
  • 8Castro I T,Sanjuán E L.Power processes and their application to reliability[J].Oper Res Lett,2004,32:415.
  • 9Lam Y.A note on the optimal replacement problem[J].Adv Appl Prob,1988,20:479.
  • 10Ross S M.Stochastic processes[M].2nd ed.New York:Wiley,1996.

共引文献14

同被引文献11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部