期刊文献+

一种非线性隔振系统的分岔与混沌研究

Bifurcation and chaos in nonlinear vibration isolation system
下载PDF
导出
摘要 分岔是通向混沌的主要道路.文章利用实验测量了非线性隔振系统中的力学参数,在实验基础上建立了非线性隔振系统的数值计算模型,通过对简谐激励下该非线性隔振系统的计算分析,并利用Poincare映射的方法得到了非线性隔振系统的全局分岔图,进而揭示了该非线性隔振系统的动力学特性. Bifurcation is the major route to chaos .In this paper , the mechanical parameters of nonlinear vibra-tion isolation system are measured by tests , and the numerical model is established based on the tests .By analy-zing harmonic excitation , global bifurcation diagram is achieved by using Poincare mapping method , and then the dynamics of the nonlinear vibration isolation system is revealed .
作者 浣石 陶为俊
出处 《广州大学学报(自然科学版)》 CAS 2014年第3期56-59,共4页 Journal of Guangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10972060)
关键词 非线性 分岔 POINCARE映射 隔振系统 nonlinear bifurcation Poincare mapping isolation system
  • 相关文献

参考文献11

  • 1JIANG R J, ZHU S J. Prospect of applying controlling chaotic vibration in the waterborne noise confrontation[ C] // 18thASME CMVN, Pittsburgh, USA, 2001. 9. DETC 2001/VIB-21633.
  • 2UEDA Y. Explosions of strange attractors exhibited by Duffing’s equation [ J] . Annals New York Acad Sci, 1980, 357 :422-433.
  • 3REGA G, BENEDETINI F, SALVTORI A. Periodic and chaotic motions of an unsymmetrical oscillator in nonlinear struc-tural dynamics[ J] . Chaos, Solitons, Fractals, 1991,1(1): 39-54.
  • 4BENEDETTINI F, REGA G,SALVATORI A. Prediction of bifurcations and chaos for an asymmetric elastic oscillator[ J].Chaos, Solitons, Fractals, 1992,2(3) : 303-321.
  • 5JIANG R J, ZHU S J, HE L. Prospect of applying controlling chaotic vibration in waterbome-noise confrontation[ C] //Proc- ASME DETC, 2011,DETC2011/VIB-21663.
  • 6LOU J J, ZHU S J, HE L, et al. Application of chaos method to line spectra reduction[ J]. J Sound Vib, 2005, 286(3):645-652.
  • 7陶为俊,浣石,朱石坚,李晓勇.连续线性-混沌混合隔振装置设计与研究[J].振动与冲击,2011,30(9):103-106. 被引量:1
  • 8陶为俊,蒋国平,浣石.多自由度混沌隔振数值研究[J].水电能源科学,2011,29(8):90-92. 被引量:2
  • 9浣石,陶为俊,朱石坚,蒋国平,李晓勇.硬特性非线性隔振装置混沌动力学特性研究[J].振动与冲击,2011,30(11):245-248. 被引量:5
  • 10陶为俊,浣石,李晓勇,朱石坚.Duffing隔振系统中的混沌特性研究[J].广州大学学报(自然科学版),2010,9(6):69-71. 被引量:1

二级参考文献29

  • 1楼京俊,朱石坚,何琳.Duffing系统对称破缺分岔及其逆分岔研究[J].武汉理工大学学报(交通科学与工程版),2005,29(1):45-48. 被引量:7
  • 2Jiang R J, Zhu S J. Prospect of applying controlling chaotic vibration in the waterbornenoise confrontation [C]. 18th Binnial Conference on Mechanical Vibration and Noise, ASME, Pittsburgh, USA, 2001. 9. DETC 2001/VIB -21633.
  • 3Ueda Y. Explosions of strange attractors exhibited by Duffing's equation[ J ]. Annals New York Acad Sci, 1980, 357:422 - 433.
  • 4Rega G, Benedettini F, Salvatori A. Periodic and chaotic motions of an unsymmetrical oscillator in nonlinear structural dynamics[J]. Chaos, Solitons, and Fractals, 1991, 1 (1) : 39 - 54.
  • 5Benedettini F, Rega G, Salvatori A. Prediction of bifurcations and chaos for an asymmetric elastic oscillator [J]. Chaos, Solitons, and Fractals, 1992,2(3) : 303 -321.
  • 6Yu X, Zhu S J, Long S Y. Bifurcation and chaos in multi- degree-of-freedom nonlinear vibration isolation system [J]. Chaos, Solitons, and Fractals, 2008,38 (5) : 1498 - 1504.
  • 7Zhu S J. Chaotic technique research for noise-reduction and vibration-isolation system on warships [ D ]. National University of Defense Technology, China, 2006.
  • 8Jiang R J, Zhu S J, He L. Prospect of applying controlling chaotic vibration in waterborne-noise confrontation [ C ]. Proceeding of ASME 2001 Design Engineering Technical Conference and Computers and Information in Engineering Conference, Pittsburgh, September, 2001, DETC 2001/ VIB-21663.
  • 9Lou J J, Zhu S J, He L, et al. Application of chaos method to line spectra reduction [J]. Journal of Sound and Vibration, 2005,286( 3 ) : 645 - 652.
  • 10He Q W, Lou J J, Zhu S J. Performance of piecewise linear vibration isolators under harmonic excitation[ C ]. Proceeding of ASME 2001 Design Engineering Technical Conference and Computers and Information in Engineering Conference, Chicago, Illinois USA, September 2 - 6, 2003. DETC 2003/mech - 48498.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部