期刊文献+

广义交替近似梯度算法的线性收敛分析 被引量:1

On the linear convergence of the general alternating proximal gradient method for convex minimization
下载PDF
导出
摘要 针对两个可分凸函数的和在线性约束下的极小化问题,在交替方向法的框架下,提出广义的交替近似梯度算法.在一定的条件下,该算法具有全局及线性收敛性.数值实验表明该算法有好的数值表现. In this paper, we propose a general alternating proximal gradient method for linear constrained convex optimization problems with the objective containing two separable functions. Our method is based on the framework of alternating direction method of multipliers. The global and linear convergence of the proposed method is established under certain conditions. Numerical experiments show that the algorithm has good numerical performance.
作者 万芮 徐姿
出处 《运筹学学报》 CSCD 北大核心 2014年第3期1-12,共12页 Operations Research Transactions
基金 国家自然科学基金资助项目(No.11101261)
关键词 交替方向法 广义交替近似梯度算法 全局收敛 Q-线性收敛 alternating direction method of multipliers, general alternating proximalgradient method global convergence, Q-linear convergence
  • 相关文献

参考文献13

  • 1Yang J, Zhang Y. Alternating direction algorithms for 11 problems in compressive sensing [J] SIAM Journal on Scientific Computing, 2011, 33: 250-278.
  • 2Cands E J, Recht B. Exact matrix completion via convex optimization [J]. Foundations of Computational Mathematics, 2009, 9: 717-772.
  • 3Cands E J, Tao T. The power of convex relaxation: near-optimal matrix completion [J]. IEEE Translations on Information Theory, 2009, 56: 2053-2080.
  • 4Qin z W, Goldfarb D, Ma S Q. An alternating direction method for total variation denoising [EB/OL]. [2013-10-05]. http://arxiv.org/pdf/llOS.1587.pdf.
  • 5Wang Y, Yang J, Yin W T, et al. A new alternating minimization algorithm for total variation image reconstruction [J]. SIAM Journal on Imaging Sciences, 2008, 1: 248-272.
  • 6Yuan X M. Alternating direction methods for sparse covariance selection selection [EB/OL]. [2013-09-10]. http: / /www.optimization-online.org/D B_FILE / 2009 /09 / 2390.pdf.
  • 7Goldfarb D, Ma S Q. Fast multiple splitting algorithms for convex optimization [J]. SIAM Journal on Optimization, 2012, 22(2): 533-556.
  • 8Goldfarb D, Ma S Q, Scheinberg K. Fast alternating linearization methods for minimizing the sum of two convex functions [J]. Mathematical Programming Series A, 2013, 141(1-2): 349-382.
  • 9He B S, Yuan X M. On non-ergodic convergence rate of douglas-rchford alternating direc- tion method of multipliers multipliers [EB/OL]. [2013-10-07]. http://www.math.hkbu.edu.hkl- xmyuan/Paper/ADM-HY-Janl6.pdf.
  • 10Goldstein T, Donoghue B O, Setzer S, et al. Fast alternating direction optimization methods [R]. California: University of California, Los Angeles, 2012, 12-35.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部