摘要
研究一个有趣的组合优化问题——二阶数乘问题.问题描述如下:给定n≥2个正整数a_1,a_2,…,a_n,设π为{1,2,…,n}的一个置换,表示该问题的一个解,试图找到一个置换π以至∑_(i=1)~n a_(π_i)a_(π_(i+1))最小,在这里π_(n+1)=π_1.给出了一个算法复杂度为O(n log n)的最优算法.
In this paper, we present a new and interesting combination optimization problem called two-order multiple problem. The problem is stated as follows. There are n ≥2 integers a1, a2, ..., an, let π be a permutation of {1,2,... ,n} which also shows a solution to the problem. We must try to find the optimal permutation 7r so that the value f o ∑i=1 aπiαπi+1 is minimal, where πn+1 =π1. We provide a polynomial-time algorithm with the complexity of O(n log n) for it.
出处
《运筹学学报》
CSCD
北大核心
2014年第3期99-103,共5页
Operations Research Transactions
基金
江西省自然科学基金项目(No.20142BAB211017)
江西财经大学校级课题项目(No.06162015)
关键词
二阶数乘
算法复杂度
最优算法
two-order multiple, algorithm complexity, optimal algorithm