期刊文献+

对流扩散方程的一种基于界面罚条件的非重叠区域分解法

On Non-overlapping Domain Decomposition Method of Convection-diffusion Equations Based on Interface Penalty Term
下载PDF
导出
摘要 应用基于界面罚条件的非重叠区域分解法求解稳态对流占优的对流扩散方程,分析了该方法的相容性,并对其有限元解进行了误差估计,证明当将罚参数ε选取得足够小时,用k阶有限元空间来逼近弱解空间,能得到最优阶的误差估计。 We applied a non-overlapping domain decomposition method via a penalization on the interface to convection-dominated convection-diffusion equations and analyzed its consistency. And the finding is that the error estimates are optimal when used finite elements of degree k and set the parameter ε small enough.
作者 曹丹 肖勇
出处 《铜仁学院学报》 2014年第4期152-156,共5页 Journal of Tongren University
基金 湖南农业大学青年科学基金项目(11QN01)资助成果
关键词 非重叠区域分解法 对流扩散方程 罚条件 有限元 误差估计 non-overlapping domain decomposition method convection-diffusion equations penalty term finite element error estimates
  • 相关文献

参考文献1

二级参考文献5

  • 1Cai Z. On the finite volume element method. Numer.Math., 1991, 58(7): 713-735.
  • 2Chou S H, Vassilevski P S. A general mixed covolume framework for constructing conservative schemes for elliptic problems. Math.Comp., 1999, 68(227): 991-1011.
  • 3Chou S H, Vassilevski P S. An upwinding cell-centered method with piecewise constant velocity over covolumes. Numer. Meth. P. D. E., 1999, 15(1): 49-62.
  • 4Wheeler M F. An elliptic collocation-finite element method with interior penalties. SIAM J.Numer. Anal., 1978, 15(1): 152-161.
  • 5Brenner S C and Scott L R. The mathematical theory of finite element methods. New York:Springer Verlag, 1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部