摘要
针对具有速度控制能力的固体火箭多约束耗尽关机问题,建立以多余视速度增量为状态量的新型能量管理模型,分析了该模型能量管理动态特性,提出一种闭环动态逆能量管理( IEM)方式,得到了无约束和有约束关机时能量管理的收敛条件,并据此设计了IEM的2种具体实现。最后以数学仿真验证了该方法的特性、能量管理效果,分析了与其他2种闭环能量管理方法--通用能量管理(GEM)、样条能量管理(SEM)的异同。结果表明,IEM方法鲁棒性强、精度高、姿态变化缓慢,能量管理范围大,一组固定的参数实现了2.1%~83.3%的能量管理;当能耗小于41.3%时,关机点速度偏差小于0.25 m/s,速度倾角小于0.014°,姿态角速度小于0.25°/s,攻角小于5°。
To solve the energy management problem of a solid rocket with multi-constraining depleted shutdown,a novel inverse dynamic energy management (IEM) method was proposed.Firstly,a novel model based on excess velocity capability was established,and its performance was studied.Secondly,a closed-loop IEM method with two specific realizations was proposed, and the constrained and unconstrained convergence condition was discussed.Finally,the IEM's performance,energy manage results and the difference with general energy management ( GEM) and spline energy management ( SEM) were verified by computer simulation, which demonstrates a strong robust,high control precision, low attitude maneuver,small terminal angle of IEM.Indeed,IEM can successfully manage 2%-83.3% energy under a sort of fixed parameters.As the ratio of excess energy is below 41.3%, the terminal velocity is less than 0.25 m/s,the flight-path angle is less than 0.014°,the attitude angular velocity is less than 0.25°/s,and the angle of attack is less than 5° .
出处
《固体火箭技术》
EI
CAS
CSCD
北大核心
2014年第4期435-441,462,共8页
Journal of Solid Rocket Technology
关键词
耗尽关机
能量管理
动态逆
多约束
固体火箭
depleted shutdown
energy management
inverse dynamic
multi-constraints
solid rocket