期刊文献+

基于碳纳米管复合纤维预制体的复合材料结构和性能 被引量:1

Investigation on structure and properties of composites based on carbon nanotubes-containing preform
下载PDF
导出
摘要 通过合成碳纳米管(CNTs)上浆剂、制备纳米复合纤维预制体、RTM成型和固化等工艺过程,将CNTs引入到连续纤维增强环氧树脂复合材料中。采用万能电子试验机、动态力学分析仪(DMA)、扫描电镜等分析测试手段,对混杂多尺度复合材料的弯曲性能、层间剪切强度、玻璃化转变温度(Tg)和微观结构进行测试和表征。结果表明,与不含CNTs的复合材料相比,引入CNTs的混杂多尺度复合材料的弯曲性能和层间剪切强度均提高50%以上。混杂多尺度复合材料的玻璃化转变温度提高至200℃。复合材料断口的扫描电镜观察表明,CNTs复合表面涂层处理能够松弛玻璃纤维增强体表面的应力集中,通过"桥联"作用提高了CNTs混杂复合材料的力学性能。 The hybrid multiscale composites were fabricated via preparing carbon nanotubes ( CNTs )-containing sizing and nanocomposite preform followed by resin transfer molding (RTM) processing.The flexural properties,interlaminar shear strength ( ILSS) , glass transition temperatures ( Tg ) and microstrctrue of the hybrid composites containing varying scale reinforcements were measured and characterized,respectively.It is demonstrated that, compared to the primary specimen,the flexural properties and ILSS of preform specimen increase more than 50% due to the incorporation of CNTs,and Tg of the hybrid composites is up to 200℃. Reduction in the stress concentration on the surface of glass fiber induced by CNTs reinforced epoxy coating is shown in scanning electron microscopy ( SEM) of the fracture of CNTs hybrid composites to identify the bridging mechanism for improving the mechanical properties.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2014年第4期578-582,共5页 Journal of Solid Rocket Technology
基金 国家自然科学基金(50703024 51373102)
关键词 碳纳米管 纳米复合预制体 混杂多尺度 “桥联”作用 carbon nanotubes nanocomposite preform hybrid multiscale bridging mechanism
  • 相关文献

参考文献14

  • 1Strong K L,Anderson D P, Lafdi K. Purification process for single-wall nanotubes [ J] .Carbon ,2003 ,dl (8) : 1477-1488.
  • 2陈平,王德中.环氧树脂[M].北京:化学工业出版社,2004.
  • 3Gao L,Chou T W,Thostenson E T,Godara A,Zhang Z.High- ly conductive polymer composites based on controlled agglom- eration of carbon nanotubes [ J ]. Carbon, 2010,48 ( 9 ) : 2649 - 2651.
  • 4Godara A, Gorbatikh L, Kalinka G. Interracial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes [ J ]. Composites Science and Technology, 2010,70(9) : 1346-1352.
  • 5Fu K, Huang W J, Lin Y. Defunctionalization of functonalized carbon nanotubes [ J ].Nano Letters, 2001,1 (8) : 439-448.
  • 6Li C, Lin J, Huang S. A new and acid-exclusive method for dispersing carbon multi-walled nanotubes in aqueous suspen- sions [ J] .Colloids and Surfaces A : Physicochemical and En- gineering Aspects , 2007,297 ( 1-3 ) : 275-284.
  • 7Rahmanian S, Suraya A R, Zahari R.Synthesis of vertically a- ligned carbon nanotubes on carbon fiber [ J ].Applied Surface Science ,2013,271 (4) :424-428.
  • 8Zhao F, Huang Y, Liu Y. Formation of a carbon fiber/poly- hedral interfoligomeric silsesquioxane/carbon nanotube hy- brid reinforcement and its effect on the acial properties of carbon fiber/epoxy composites [ J ]. Carbon, 2011,49 : 2624- 2632.
  • 9Art Q, Rider A N, Thostenson E T.Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical proper- ties [ J ] .Carbon,2012,50:4130-4143.
  • 10Jiang K, Wang J, Li Q. Superaligned carbon nanotube ar- rays, films, and yams : a road to applications [ J ]. Advanced Materials ,2011,23(10) : 1154-1161.

共引文献7

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部