期刊文献+

基于Walker星座的导航卫星自主导航的GDOP最小值分析 被引量:1

Analysis of GDOP Minimum Value for Autonomous Navigation Based on the Walker Constellation
下载PDF
导出
摘要 卫星自主定轨时选择测量卫星的几何构型对于定轨精度有着重要的影响。目前地面接收机与导航卫星的几何构型对定位精度的影响主要由GDOP(几何衰减因子)来衡量,GDOP值的下限限制了在一定的测量精度下用户定位的精度范围。通过构建Walker构型的导航星座将地面接收机GDOP取最小值时的边界确定,推广应用到自主导航环境下,利用均匀采样和遗传算法分别独立得到GDOP的最小值,同时用仿真数据验证了这个值的正确性。 Geometry of measuring satellites has important implications for precision of the autonomous orbit determination. Currently, the affecting of the geometry for terrestrial receiver and a navigation satellites on the positioning precision are measured mainly by the GDOP. The lower limit of GDOP limits the measurement accuracy of a positioning accuracy range of the user. Constructing navigation constellation of Walker configuration determines the boundaries for taking the minimum value of GDOP of the terrestrial receiver. To promote the use of autonomous navigation environment, uniform sampling and genetic algorithms are used get the minimum GDOP independently. Simultaneously, the simulation data verfies the correctness of the minimum GDOP.
出处 《计算机与数字工程》 2014年第9期1632-1636,共5页 Computer & Digital Engineering
关键词 自主导航 GDOP 均匀采样 autonomous navigation, GDOP, uniform sampling
  • 相关文献

参考文献14

  • 1丛丽,Ahmed I Abidat,谈展中.卫星导航几何因子的分析和仿真[J].电子学报,2006,34(12):2204-2208. 被引量:68
  • 2丛丽,谈展中.提高卫星导航定位精度和实时性的选星算法[J].系统工程与电子技术,2008,30(10):1914-1917. 被引量:33
  • 3iang long, Mlao Lingjuan. GEK)P results in all-in- view positioning and in four optimum satellites positio- ning with GPS PRN codes ranging[C]//IEEE Position Location and Navigation Symposium, 2004 : 723-727.
  • 4Chih-Hung Wu, Va-Wei Ho. Genetic Programming for the Approximation of GPS GDOP[C]. [S. 1. ] Proceed- ings of the Ninth International Conference on MachineLearning and Cybernetics, Qingdao, 11-14 July 2010 : 2944-2949.
  • 5H. Sairo, D. Akopian, J. Takala. Weighted dilution of precision as quality measure in satellite positioning [C]//IEE Proc:Radar Sonar Navig., 2003, 150 (6): 430-436.
  • 6Chih-Hung Wu, Wei-Han Su, Ya-Wei Ho. A Study on GPS GDOP Approximation Using Support-Vector Ma- chines[J]. IEEE Transactions on Instrumentation and Measurement, 2011,60(1) : 137-145.
  • 7Chih-Hung Wu, Wei-Han Su. A Comparative Study on Regression Models of GPS GDOP Using Soft-Compu- ting Techniques[C]//FUZZ-IEEE 2009, Korea, Au- gust 20-24,2009 : 1513-1516.
  • 8Ian Sharp, Kegen Yu, Y. Jay Guo. GDOP Analysis {or Positioning System Design[J]. IEEE Transactions on Vehicular Technology, 2009,58 (7) : 3371-2282.
  • 9James Chaffee, Jonathan Abel. GDOP and the Cramer- rao Bound[J]. [S. 1. ] Position Location and Navigation Symposium, 11-15 Apr 1994, IEEE:663-668.
  • 10Yarlagadda Ali, ADhahirN, et al. GPS GDOP Metric [J].[S. 1. ] IEE Proceeding, Radar, Sonar Naviga- tion, 2000,147(5) : 259-264.

二级参考文献22

共引文献101

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部