期刊文献+

基于GF(2^m)的椭圆曲线求逆算法的改进研究 被引量:3

Improvement and research of inversion algorithm of elliptic curve based on GF (2m)
下载PDF
导出
摘要 针对二进制域上现有求逆算法计算量大、并行度小、速度慢的缺点进行改进,基于二元Euclidean算法提出了改进,设计了相应的乘法器硬件结构,并且分析了其运算效能和资源占用情况。将此求逆计算器的并行改进算法使用Verilog语言编程实现,利用Xilinx ISE 12.4对整个求逆算法综合仿真(行为级),在Xilinx Virtex-5 XC5VFX70T的硬件平台上验证求逆算法的运算效率,结果表明对求逆算法的改进有效地提高了求逆运算的速度。 Since the existing inversion operation algorithm based on GF(2^m) has the following disadvantages: large amount of calculation, poor degree of parallelism and slow speed, an improved algorithm is proposed in this paper based on Extended Euclidean Algorithm. A corresponding multiplier hardware structure was designed. Its operation performance and the status of re- source occupancy are analyzed. This parallel improved algorithm of inversion operation calculator was realized with the program based Verilog. The comprehensive simulation of the whole inversion algorithm was conducted with Xilinx ISE 12.4. The opera- tion efficiency of the inversion algorithm was verified on hardware platform of Xilinx Virtex-5 xc5vfx70t. The experimental result and performance comparison show that the modification of the inversion algorithm has improved its speed.
出处 《现代电子技术》 2014年第18期19-22,共4页 Modern Electronics Technique
基金 国家自然科学基金(61303045) 江苏省自然科学基金(BK2012237)
关键词 椭圆加密 二进制域 求逆 扩展欧几里得算法 ECC GF(2^m) inverse operation expend Euclidean algorithm
  • 相关文献

参考文献9

  • 1W.DIFFIE H M. New direction in cryptography [J].IEEE Tran-sactions on information Theory, 1976,22(6) : 644-654.
  • 2HANKERSON Darrel, MENEZES Alfred, VANSTONE Scott.,Guide to Elliptic Curve Cryptography[M].张焕闻,译.北京:电子工业出版社,2005.
  • 3BKOWN M,HANKERSON D, LOPEZ J,et al. Software im-plementation of the NIST elliptic curves over prime fields [C]//Topics in Cryptology-CT-RSA. [S.l.]: Springer, 2002: 250-265.
  • 4SEHROEPPEL K, ORMAN H,O'MALLEY S,et al. Fast keyexchange with elliptic curve systems |C]// Advances in Cryptolo-gy-CRYPTO. [S.l.]: [s.n.], 1995: 43-56.
  • 5IEEE. IEEEP1363-2000 IEEE standard specifications for public-key cryptography [S|. USA : IEEE, 2000.
  • 6ZHANG Yu, CHEN Dong-dong, CHOI Younhee, et al. A highperformance ECC hardware implementation with instruction-levelparallelism over GF (2163) |J |. Microprocessors and Microsys-tems ,2010, 34: 228-236.
  • 7高献伟,欧海文,董秀则,靳济方.基于FPGA的GF(2^m)域求逆算法的设计研究[J].计算机工程与应用,2006,42(9):135-137. 被引量:2
  • 8秦帆,戴紫彬.有限素域上椭圆曲线模逆运算的设计与实现[J].计算机工程与应用,2008,44(23):117-119. 被引量:2
  • 9蔡振国,陈韬,郁滨.基于GF(2^n)的ECC乘法逆元的快速实现[J].微处理机,2006,27(3):59-62. 被引量:1

二级参考文献20

  • 1高献伟,靳济方,方勇,李为民.GF(2^m)域乘法器的快速设计及FPGA实现[J].计算机工程与应用,2004,40(25):111-112. 被引量:9
  • 2钟旭,陆浪如,南相浩,洪泽勤.一种基于种子密钥SPK的IBE加密体制设计方案[J].微计算机信息,2005,21(4):226-227. 被引量:12
  • 3Miller V S.Use of elliptic curves in cryptography[C]//CRYPTO'85, 1986: 417-426.
  • 4Koblitz N,Elleptic curve cryptosystems[J].Mathematics of computation, 1987,48 (4) : 203 -209.
  • 5Standard Specifications for Public-key Cryptography,IEEE Standard P1363 [S/OL], ( 2000).http ://gmuper.ie-ee.org/groups/1363.
  • 6Mcivor C J,Mcloone M,Mccanny J V.Improved montgomery modular inverse algorithm[J].IEEE Electronics Letters, 2004,40(18).
  • 7Kaliski B S.The montgomery inverse and its applications[J].IEEE Transactions on Computers, 1995,44(8) : 1064-1065.
  • 8Savas E,Koc C K.The montgomery modular inverse-revisited[J]. IEEE Transactions on Computers, 2000,49(7) :763-766.
  • 9Mcivor C J,Mcloone M.Hardware elliptic curve cryptographic processor over GF(p )[J].IEEE Transactions on Circuits and Systems, 2006,53(9) : 1946"1957.
  • 10Koc C K,Acar T,Kaliski B S.Analyzing and comparing montgomery multiplication algorithms[J].IEEE Micro, 1996,16(3) :26-33.

共引文献2

同被引文献16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部