期刊文献+

Dempster-Shafer证据融合金字塔韦伯局部特征的表情识别 被引量:6

Research on facial expression recognition based on pyramid Weber local descriptor and the Dempster-Shafer theory of evidence
原文传递
导出
摘要 目的针对韦伯局部特征(WLD)在局部细节表征上的局限性,提出一种基于金字塔韦伯局部特征(PWLD)的人脸表情识别方法。方法首先对人脸图像进行预处理,分割出表情显著区域;然后根据显著区域大小进行分层并加以分块,对每一层的不同块提取PWLD特征,将测试集与训练集的PWLD直方图的卡方距离归一化作为独立证据来构造基本概率分配(BPA);最后利用D-S(Dempster-Shafer)证据理论联合规则得到融合后的BPA,进而得出识别结果。结果在JAFFE库与Cohn-Kanade库上进行交叉验证,平均识别率分别为95.81%和97.47%。结论 PWLD特征在局部细节表征上比WLD特征更具有优势。与目前典型的方法进行对比实验,验证该方法的有效性和容错性,同时证明该方法在噪声和光照条件下具有一定的鲁棒性。 Objective Feature extraction is the most critical step in pattern recognition,and facial expression recognition is no exception.Weber Local Descriptor (WLD) is a method that can effectively extract texture information from images and has the advantages of being consistent with human perception of human beings and being insensitive to noise and non-monotonic illumination variations.However,WLD has some limitations in the feature representation of local details.To overcome these limitations,a facial expression recognition method based on Pyramid WLD (PWLD) is proposed in this study.Method First,facial images are preprocessed.This step includes the detection of faces from facial expression databases and normalization.The salient regions of segment 2 that have significant contributions to facial expression recognition from images are also preprocessed.One of these salient regions is that which includes the eyes and eye brows,while another is that with the mouth.The sizes of salient regions differ,and these regions contain different information.Thus,we stratify these salient regions and divide each layer into different blocks.The PWLD features of each block in each layer are then extracted and cascaded to represent the global and local features of a salient region reasonably,with some parameter adjustments.Second,we compute for the Chi-square distance of the PWLD histograms in both the testing and training sets.We then choose the minimum distance in every category of expressionsand normalize this distance to construct the Basic Probability Assignment (BPA) as independent evidence.To create the BPA,we use curve fitting in numerical analysis by simulating several sets of data.Finally,fusion BPA is obtained by using the Dempster-Shafer rule,and the results are further obtained by employing thedecision-making and judgment of Dempster-Shafertheory of evidence.Result By fusing the PWLD features of the two different salient regions with Dempster-Shafer theory of evidence,we can overcome the limitations of a single regional featureand acquire more reliable and accurate results.We conduct some cross-validation experiments on the JAFFE and Cohn-Kanade facialexpression databases,and the average recognition rates reach up to 95.81% and 97.47%,respectively.In addition,we perform some experiments with other algorithms,such as LBP,LDP,and Gabor; we also conduct some comparative experiments that combine the PWLD with different classifiers,such as 1-NN and SVM.Conclusion The WLD,which is known as a robust image descriptor,can well extract the texture information of images.Moreover,the PWLD can accurately describe the local details,which have more advantages than the WLD features.The comparative results of some typical methodsverify the effectiveness and fault tolerance of the proposed method.The proposed method has certain robustness under simultaneous noise and light conditions.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第9期1297-1305,共9页 Journal of Image and Graphics
基金 国家自然科学青年基金项目(61300119) 国家高技术研究发展计划(863)基金项目(2012AA011103) 安徽省科技攻关基金项目(1206c0805039)
关键词 表情识别 韦伯局部特征(WLD) 金字塔韦伯局部特征 DEMPSTER-SHAFER证据理论 facial expression recognition Weber local descriptor (WLD) pyramid Weber local descriptor (PWLD) Dempster-Shafer (D-S) theory of evidence
  • 相关文献

参考文献18

  • 1Dhall A,Goecke R,Lucey S,et al.Static facial expression analysis in tough conditions:data,evaluation protocol and benchmark[C] //Proceedings of IEEE International Conference on Computer Vision Workshops.Los Alamitos:IEEE Computer Society Press,2011:2106-2112.
  • 2Fasel B,Luettin J.Automatic facial expression analysis:a survey[J] .Pattern Recognition,2003,36(1):259-275.
  • 3薛雨丽,毛峡,郭叶,吕善伟.人机交互中的人脸表情识别研究进展[J].中国图象图形学报,2009,14(5):764-772. 被引量:49
  • 4Valstar M F,Jiang B H,Mehu M,et al.The first facial expression recognition and analysis challenge[C] //Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition.Los Alamitos:IEEE Computer Society Press,2011:921-926.
  • 5Gehrig T,Ekenel H K.Facial action unit detection using kernel partial least squares[C] //Proceedings of IEEE International Conference on Computer Vision Workshops.Los Alamitos:IEEE Computer Society Press,2011:2092-2099.
  • 6Jabid T,Kabir M H,Chae O.Facial expression recognition using local directional pattern[C] //Proceedings of IEEE International Conference on Image Processing.Los Alamitos:IEEE Computer Society Press,2010:1605-1608.
  • 7Liu W F,Wang Z F.Facial expression recognition based on fusion of multiple gabor features[C] //Proceedings of the 18th International Conference on Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2006:536-539.
  • 8Shan C F,Gong S G,McOwan P W.Facial expression recognition based on local binary patterns:a comprehensive study[J] .Image and Vision Computing,2009,27(6):803-816.
  • 9Zhou M C,Lin L,Sun Jian,et al.AAM based tracking with temporal matching and face segmentation[C] //Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2010:701-708.
  • 10Sun X H,Xu H X,Zhao C X,et al.Facial expression recognition based on histogram sequence of local Gabor binary patterns[C] //Proceedings of IEEE Conference on Cybernetics and Intelligent Systems.Los Alamitos:IEEE Computer Society Press,2008:158-163.

二级参考文献95

  • 1薛雨丽,毛峡,张帆.BHU人脸表情数据库的设计与实现[J].北京航空航天大学学报,2007,33(2):224-228. 被引量:20
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces: vs. fisherfaces: recognition using class specific linear projection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 3Sire T, Baker S, Bsat M. The CMU pose, illumination, and expression (PIE) database [ A ] . In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition [C] , Washington, DC, USA, 2002: 46-51.
  • 4Martinez A M, Benavente R. The AIR face database [ R]. Technical Report 24, The Computer Vision Center (CVC), Barcelona, Spain, 1998.
  • 5Hwang B W, Rob M C, Lee S W. Performance evaluation of face recognition algorithms on Asian face database [ A ]. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition [ C ], Seoul, South Korea, 2004 : 278-283.
  • 6Gau W, Cao B, Sban S, et al. The CAS-PEAL large-scale chinese face database and baseline evaluations [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 2008, 38( 1 ) : 149-161.
  • 7Pantic M, Rothkrantz L J M. Automatic analysis of facial expressions: the state of the art [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 ( 12 ) : 1424-1446.
  • 8Fasel B, Luettin J. Automatic facial expression analysis: a survey [ J]. Pattern Recognition, 2003, 36 ( 1 ) : 259-275.
  • 9Essa I, Pentland A. Coding, analysis, interpretation, and recognition of facial expressions [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 757-763.
  • 10Yacoob Y, Davis L. Recognizing human facial expressions from long image sequences using optic flow [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(6) : 636-642.

共引文献58

同被引文献29

  • 1Jain A K,Ross A, Prabhakar S.An introduction to biometric recognition [J].IEEE Transactions on Circuits and Systems for Video Technology,2004,14(1):4-20.[DOI:10.1109/TCSVT.2003.818349].
  • 2Shu W, Zhang D. Palmprint verification: an implementation of biometric technology[C]//Proceedings of 14th International Conference on Pattern Recognition.Washington DC:IEEE, 1998,1:219-221. [DOI: 10.1109/ICPR.1998.711120].
  • 3Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2):91-110.[DOI: 10.1023/B:VISI.0000029664.99615.94].
  • 4Jabid T, Kabir M H, Chae O, Robust facial expression recognition based on local directional pattern[J].ETRJ Journal,2010,32(5):784-794.[DOI:10.4218/etrij.10.1510.0132].
  • 5Chen J,Shan S,He C, et al.WLD:a robust local image descriptor [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1705-1720.[DOI: 10.1109/TPAMI.2009.155].
  • 6Jia W, Hu R X,Lei Y K, et al.Histogram of oriented lines for palmprint recognition[J].IEEE Transactions on Systems,man,and Cybernetics:Systems,2014,44(3):385-395.
  • 7Huang D S, Jia W, Zhang D.Palmprint verification based on principal lines [J]. Pattern Recognition,2008,41(4): 1316-1328.[DOI: 10.1016/j.patcog.2007.08.016].
  • 8Zhang W C, Shan S, Gao W, et al. Local gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition[C]/Proceedings of 10th IEEE International Conference on Computer Vision.Washington D C:IEEE 2005, 1: 786-791.[DOI: 10.1109/ICCV.2005.147].
  • 9Zhang D, Kong W K, You J, et al. Online palmprint identification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9):1041-1050.[DOI: 10.1109/TPAMI.2003.1227981].
  • 10Jia W, Hu R X,Gui J, et al. Palmprint Recognition across different devices[J].Sensors,2012,12:7938-7964.[DOI:10.3390/s120607938].

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部