期刊文献+

面向瓦当文字识别的改进水平集骨架提取 被引量:3

Skeleton extraction using improved level set methods in eaves' text recognition
原文传递
导出
摘要 目的瓦当是珍贵的历史文化遗产。为了进行瓦当的数字化保护和瓦当文字的自动识别,针对瓦当图像高磨损、高噪声和拓扑复杂的特点,提出基于梯度矢量流场改进的level set骨架提取算法。方法算法在传统level set骨架算法的基础上对中间函数进行改进,引入基于修正梯度矢量流场的中间函数替代传统的基于欧氏距离场的中间函数,主要通过两次速度不同的波传播实现,因此提高了算法的自动性和精确性。结果面对构建的标准模型,算法所提骨架线与标准骨架线的平均匹配度为98.03%,骨架均为单像素宽,居中性良好。面对各种噪声,本文算法所提骨架线与不加噪声骨架线的平均匹配度为99.15%,算法的抗噪性强。面对拓扑复杂模型,算法得到的骨架与原图像拓扑一致性、连通性、光滑性良好。结论实验结果表明,本文算法提取的骨架性能良好,算法抗噪性强,对拓扑复杂物体亦有较好结果,是一种有效的骨架提取算法。 Objective Eaves are precious Chinese heritage which possess profound historical and cultural significance.However,eaves' characters images have obvious characteristics of high wear resistance,high noise and complex topology.In order to achieve eaves' characters recognition and make a contribution to digital protection of cultural heritage objects,a new method based on improved gradient vector flow field is proposed to extract skeleton of eaves' characters.Method The algorithm proposed in this paper is based on classic level set methods which are usually implemented by fast matching method.What is different is that traditional medial function of level set method is replaced by gradient vector flow based medial function,which is more automatic and accurate.It is also the innovation point of this paper.The new algorithm is mainly achieved by two wave propagations.Result Experiments verify the effectiveness and accuracy of the algorithm.The skeleton is 98.03% similar to the standard skeleton of specific models constructed by Matlab2012a.when Gaussian,multiplicatire,salt and pepper noise are added into the image,we got a skeleton 99.15% similar to the former one without any noise in it.Improved level set method surpasses Hilditch thinning algorithm and distance transform algorithm and gets the best skeleton of eaves' characters,which is homotopy,thinness,centered and smoothness.Conclusion The results of the experiments indicate that our algorithm proves to be a useful and effective technique to extract skeleton of 2D objects with complex topology.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第9期1324-1331,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61271366 61170170 61170203) 中央高校基本科研业务费专项基金项目(2012LYB49) 首都科技条件平台项目(Z131110000613062)
关键词 汉代瓦当 文物保护 骨架线 水平集 梯度矢量流场 eaves tiles heritage conservation centerline extraction level set method gradient vector flow
  • 相关文献

参考文献2

二级参考文献75

  • 1郑启亮,吴功栋,易铃芳,张仁杰.指纹识别技术在开放实验室管理中的应用[J].仪器仪表学报,2006,27(z3):2287-2288. 被引量:2
  • 2李伟锋,郁道银,谢洪波,陈晓冬.一种新型各向同性的连通数细化方法[J].仪器仪表学报,2003,24(z2):408-410. 被引量:1
  • 3丁颐,刘文予,郑宇化.基于距离变换的多尺度连通骨架算法[J].红外与毫米波学报,2005,24(4):281-285. 被引量:24
  • 4Yezzi A,Zoollei L,Kapur T.A variational framework for joint segmentation and registration[A].In:IEEE Workshop on Mathematical Methods in Biomedical Image Analysis[C],Kauai,HI,USA,2001:44 ~51.
  • 5CHEN Yun-mei,Thiruvenkadam S,Feng Huang,et al.Simultaneous segmentation and registration for functional MR images[J].In:IEEE Proceedings 16th International Conference on Pattern Recognition[C],Québec,QC,Canada,2002,1:747 ~ 750.
  • 6Kim J,Tsai A,Cetin M,et al.A curve evolution-based variational approach to simultaneous image restoration and segmentation[A].In:Proceedings Conference on Image Processing[C],Rochester,New York,USA,2002,1:109 ~ 112.
  • 7Moelin M,Chan T F.Tracking objects with the Chan-Vese algorithm[R].UCLA CAM Report[EB/OL],http://www.math.ucla.edu/applied/cam
  • 8Paragios N,Deriche R.Unifying boundary and region-based information for geodesic active tracking[A].In:IEEE ComputerSociety Conference on Computer Vision[C],Fort Collins,Colorado,USA,1999,2:23 ~ 25.
  • 9Paragios N,Deriche R.Geodesic active regions for motion estimation and tracking[A].In:Proceedings of the 7th IEEE International Conference on Computer Vision[C],Kerkyra,Greece,1999,1:668 ~ 694.
  • 10Paragios N,Deriche R.A PDE-based level-set approach for detection and tracking of moving objects[A].In:Proceedings of 6th International Conference on Computer Vision[C],Bombay,India,1998:1139 ~ 1145.

共引文献54

同被引文献28

  • 1南晓虎,丁雷.深度学习的典型目标检测算法综述[J].计算机应用研究,2020,37(S02):15-21. 被引量:55
  • 2张振江.贵州水族的水书与水书传承札记[J].文化遗产,2008(4):74-81. 被引量:11
  • 3刘峡壁,贾云得.一种字符图像线段提取及细化算法[J].中国图象图形学报(A辑),2005,10(1):48-53. 被引量:9
  • 4Guillaume, Lavour, Dupont Florent, et al. Curvature tenor based triangle mesh segmentation with boundary rectification [ C ]///Com- puter Graphics International 2004 Proceedings. Crete Greece,2004: 10-25.
  • 5Zhang X, Li G, Xiong Y, et al. 3D mesh segmentation using mean - shifted curvature[ M] ffAdvances in Geometric Modeling and Pro- cessing. Berlin: Springer Berlin Heidelberg: 2008:465 -474.
  • 6Hitoshi Y, Stefan G, Rhaleb Z, et al. Mesh segmentation driven by Ganssian curvature[J]. Visual Comp, 2005, 21 ( 8 - 10) : 659 - 668.
  • 7Chen X, Sehmitt F. Intrinsic surface properties from surface trian- gulation[ C ]. Computer Vision ECCV 92. Springer Berlin Heidel- berg, 1992 : 739 - 743.
  • 8Taubin G. Estimating the tensor of curvature of a surface from a pol- yhedral approximation [ C ]//Computer Vision 1995 Proceedings. Fifth International Conference on IEEE, 1995 : 902 - 907.
  • 9Liu S, Martin R R, Langbein F C, et 02. Segmenting reliefs on tri- angle meshes[J]. Proc Acm Syrup Solid Physi Mod, 2006:7 -16.
  • 10Chen Y, Cheng Z Q, Li J, et 02. Relief extraction and editing. [ J]. Computer - Aided Design, 2011,43(12) :1674 - 1682.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部