期刊文献+

改进的混沌粒子群算法对WLS-SVM性能参数的优化

Improved Chaos Particle Swarm Optimization Algorithm for Optimizing the Parameters of WLS-SVM
下载PDF
导出
摘要 加权最小二乘支持向量机(WLS-SVM)的学习性能和泛化能力取决于其正则化因子C和核函数参数σ的取值。对此,针对WLS-SVM建立C和σ的组合优化目标函数,采用基于Lozi映射的粒子群(PSO)算法来搜索最优目标函数值。迭代过程中,通过分别映射PSO个体最优位置,把产生的混沌序列中的最优解分别逆运算取代当前个体最优位置,引入混沌机制,以混沌变量的遍历性改进粒子群算法,提高全局搜索能力,避免过早陷入局部最优。将其应用于某玩具企业原料月消耗量预测,结果表明了文中所提方法的有效性。 The learning and generalization ability of the weighted least squares support vector machine (WLS-SVM) depends on the values of its regularization factor C and kernel function parameter σ.Thus,the optimization objective function based on C and σ is established,then an improved particle swarm optimization (PSO) algorithm based on the Lozi mapping is utilized to search the optimal objective function value.The chaos mechanism is introduced by mapping the PSO individual optimal value separately during iterations,then the current PSO individual optimal position is replaced with the optimal values through the inverse operation of the chaos sequence,in this way,the global search ability is improved and the premature local optimum is avoided using the ergodicity of the chaotic variables in the inproved particle swarm optimization.An experiment is applied to the prediction of a toy company's raw material monthly consumption,the results show the effectiveness of the proposed method.
出处 《江南大学学报(自然科学版)》 CAS 2014年第4期383-386,共4页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家高技术研究发展计划项目(2013AA040405) 江苏省产学研联合创新项目(BY2012055) 粤港关键领域重点突破项目(2012498C14)
关键词 Lozi映射 PSO算法 加权最小二乘支持向量机 参数优化 Lozi map PSO algorithm WLS-SVM parameter optimization
  • 相关文献

参考文献11

  • 1Suykens J A K,Vandewalle J.Least squares support vector machines classifiers[J].Neural Processing Letters,1999,9 (3):293-300.
  • 2Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag New York Inc,2000.
  • 3熊伟丽,王肖,陈敏芳,徐保国.基于加权LS-SVM的青霉素发酵过程建模[J].化工学报,2012,63(9):2913-2919. 被引量:15
  • 4Mustafa M W,Sulaiman M H,Shareef H,et al.Reactive power tracing in pool-based power system utilizing the hybrid genetic algorithm and least squares support vector machine[J].IET Generation,Transmission and Distribution,2012,6 (2):133-141.(in Chinese).
  • 5阎威武,邵惠鹤.支持向量机和最小二乘支持向量机的比较及应用研究[J].控制与决策,2003,18(3):358-360. 被引量:138
  • 6Suykens J A K,De Brabanter J,Lukas L,et al.Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing,2002,48 (1):85-105.
  • 7Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Perth,WA:[s.n.],1995:1942-1948.
  • 8徐海龙,王晓丹,廖勇,张宏达,蒋玉娇.一种基于PSO的RBF-SVM模型优化新方法[J].控制与决策,2010,25(3):367-370. 被引量:15
  • 9Gandomi A H,YUN G J,YANG X S,et al.Chaos-enhanced accelerated particle swarm optimization[J].Communications in Nonlinear Science and Numerical Simulation,2013,18 (2):327-340.
  • 10刘道华,原思聪,兰洋,马新建.混沌映射的粒子群优化方法[J].西安电子科技大学学报,2010,37(4):764-769. 被引量:44

二级参考文献43

共引文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部