期刊文献+

结合局部优化的蚁群优化算法的研究与实现 被引量:1

Research and Implementation of Ant Colony Optimization Algorithm Combining with Local Optimization
下载PDF
导出
摘要 蚁群算法是一种成功的启发式算法,但在解决TSP问题时存在着收敛速度慢和易陷入局部最优解的问题。本文针对这两个问题,提出了定期交流和模范带头学习模型,前者是在蚂蚁每走过一定城市后,进行学习交流,选出所走路径相对较短的蚂蚁进行信息素影响,从而加快总体的收敛速度;后者是当所有蚂蚁都旅行一圈后,选出最优秀的蚂蚁,在其走过的路径上释放大量信息素,对下一周期蚂蚁的旅行进行引导,避免陷入局部最优解。实验结果表明新算法在求解质量上比传统蚁群算法有了明显提高。本文也通过实验分析了蚂蚁数量等参数对算法性能的影响。 Ant colony algorithm is a successful heuristic algorithm, but it has two disadvantages in solving Traveling Salesman Problem (TSP), that is slow convergence and easy to fall into local optima ion. In this paper, the authors propose a regular exchange model and an exemplary model of learning. The former is that each ant walking in certain cities, learning exchanges, the path chosen by the relatively short walk pheromone ant influence, thus speeding up the overall speed of convergence; the latter is that when all the ants are traveling around after selection of the most outstanding ants, release large amounts of pheromone on its path traversed for the next cycle of ants traveling to boot, to avoid falling into local optima. After comparison with the conventional ant colony algorithm found that the new algorithm has been significantly improved in the solution quality. The paper analyzes the influence of the parameters, such as ant population, on the algorithm performance.
出处 《价值工程》 2014年第29期227-229,共3页 Value Engineering
基金 辽宁大学大学生创新创业训练计划(X201310140029)资助
关键词 蚁群算法 TSP问题 优化算法 ant colony algorithm TSP problem optimization algorithm
  • 相关文献

参考文献6

  • 1Dorigo M, Maniezzo V, Co lorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man and Cybernetics Part B, 1996, 26(1):29-41.
  • 2Dorigo M, Gambardella L M. Ant colony system:A cooperative learning approach to the traveling salesman problem [J]. IEEE Trans on Evolutionary Computation,1997,1(1):53-66.
  • 3Stuzle T, Hoos HH. MAX-MIN ant system and local search for the travelling salesman problem. In: Proc. of the 4th IEEE Int'l Conf. on Evolutionary Computation (ICEC'97). New York: IEEE Press, 1997: 309-314.
  • 4吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报,2001,24(12):1328-1333. 被引量:247
  • 5Li ZY, Wang Y, Olivier KKS, Chen J, Li KL. The cloud- based framework for ant colony optimization. In: Proc. of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation. Shanghai: ACM, 2009,279-286.
  • 6徐精明,曹先彬,王煦法.多态蚁群算法[J].中国科学技术大学学报,2005,35(1):59-65. 被引量:66

二级参考文献13

  • 1康立山 谢云 等.非数值并行算法(第1册)[M].北京:科学出版社,1997..
  • 2Dorigo M, Maniezzo V, Colorni A. The Ant System:Optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1996,26(1):29-41.
  • 3Dorigo M,Gambardella L M. Ant colony system:a cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation,1997,1(1) :53-66.
  • 4Dorigo M, Gambardella L M, Middendorf M,Stutzle T. Guest editorial: special section onant colony optimization [J]. IEEE Transactions on Evolutionary Computation, 2002, 6.(4):317-319.
  • 5Stutzle T, Hoos H. MAX-MIN Ant System[J]. Future Generation Computer Systems,2000,16(8) : 889-914.
  • 6Jiang Rui,Proc Conference on Intelligent Information Processing(WCC 2000 IIP 2000),2000年,478页
  • 7Wu Qinghong,计算机研究与发展,1999年,36卷,10期,1240页
  • 8康立山,非数值并行算法.1 模拟退火算法,1997年
  • 9杜端甫.运筹图论[M].北京:航空航天大学出版社,1990..
  • 10吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306

共引文献308

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部