期刊文献+

悖论与塔斯基真理定义

Antinomy and Definition of Truth by Tarski
下载PDF
导出
摘要 塔斯基真理定义的理论有两个目标:一个是哲学的目标,一个是元数学的目标。塔斯基的哲学目标是提供一个真理的普通概念,即在科学、数学和日常话语中通常使用的真理概念的定义。元数学的目标是研究逻辑方法论,元数学(又称元逻辑)研究的是在逻辑框架(一阶和高阶数理逻辑)中理论(特别是数学理论)的形式性质以及逻辑框架本身的性质。真理的概念在元逻辑研究中扮演着重要的角色。然而,由于这一概念会产生悖论,因而,塔斯基的第二个目标是证明"真理"概念可以在元逻辑中一致性地被使用。 There are two objectives for the definition of truth made by Tarski: One is philosophical, and the other is meta-mathematic. The philosophical objective lies in a simple concept of truth, i.e. the commonly-used concept in daily life concerning science and mathematics. The meta-mathematic one lies in the methodology in logic research, and it is about the nature of form and logic itself. The concept of truth plays an important role in meta-logic research; however, due to the antinomy resulted from the concept, the second objective in the definition made by Tarski is to prove that the concept of "truth" can be unanimously used in meta-logics.
作者 朱建平
出处 《渤海大学学报(哲学社会科学版)》 2014年第4期124-129,共6页 Journal of Bohai University:Philosophy & Social Science Edition
关键词 真理 形式化语言 真理定义 语义学 truth concept of truth in formalized languages semantics
  • 相关文献

参考文献5

  • 1Aristotle. Metaphysics. The Basic Works of Aristotle, ed.R. Mckeon. New York: Random House, 1941, (1011b25).
  • 2Vaught, R.L. Model theory before 1945, Procreedings of the Tarski Symposflum,eds.
  • 3Tarski,A.The concept of truth in formalized languages. In Tarski (1933)252-278.
  • 4Tarski, A.The establishment of scientific semantics. In Tarski(1936)401-8.
  • 5Ramsey, F. ( 1927 ) Facts and propositions. The Foundations of Mathematics. Paterson,NJ:Littlefield, Adams, 1960, 138-55.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部