期刊文献+

新混沌系统的全局渐进同步控制研究 被引量:3

The research on global asymptotic synchronization control of a new chaos system
下载PDF
导出
摘要 对非线性控制混沌同步的理论方法做系统的描述。基于修改的Lyapunov稳定性理论,提出设计一个控制器就可以实现两个系统的同步的方法,它的优点是不需要计算系统的条件Lyapunov指数。基于Lyapunov稳定性理论和非线性控制方法,在初值不同的情况下,选取合适的控制器,使得两个相同的混沌系统以及Chen混沌系统和新的混沌系统实现全局渐进同步。运用Matlab仿真做出两个混沌系统的同步动态误差图,验证了本方法的有效性。 The detailed description of the chaotic synchronization method in nonlinear control theory is introduced. Based on the modified Lyapunov stability theory,a method is presented to design a controller which can realize the synchronization of two systems. The advantage of this method is not need to compute the condition Lyapunov exponent of the system. According to Lyapunov stability theory and the method of nonlinear control,in the case of different initial conditions,the appropriate controller is designed to make the two same Chen chaotic system,Chen chaotic system and a new chaotic system to realize global asymptotic synchronization. In addition,the MATLAB simulation method is used to plot the figure of synchronization dynamic error of the two chaotic systems,which can further verify the effectiveness of the proposed method.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2014年第4期448-454,共7页 Journal of Natural Science of Heilongjiang University
基金 中央高校基本科研业务费专项资金资助项目(HIT.IBRSEM.A.201411)
关键词 新混沌系统 混沌同步 LYAPUNOV稳定性理论 new chaotic system chaotic synchronization Lyapunov stability theory
  • 相关文献

参考文献15

  • 1CAFAGNA D, GRASSI G. Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rossler systems[J]. Nonlinear Dynamics, 2012, 68(1-2): 117 -128.
  • 2HUBLER A W. Adaptive control of chaotic system [J]. Helvetia Physica Acta, 1989, 62( 4) : 343 -346.
  • 3PECORA L, CARROLL T. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64(8) : 821 - 824.
  • 4CHEN Guan-rong, LAI De-jian. Feedback anticontrol of discrete chaosj J}. International Journal of Bifurcation and Chaos, 1998,8(7): 1585 - 1590.
  • 5LIMA R, PETTINI M. Suppression of chaos by resonant parametric perturbations[J]. Physical Review A, 1990,41(2): 726 -733.
  • 6CALKINS F T ,MABE J H. Shape memory alloy based morphing aerostructures[J]. Journal of Mechanical Design, 2010, 132(11) :doi: 10.11151 1. 4001119.
  • 7OTT E, GREBOGI C, YORKE J A. Controlling chaosj L]. Physical Review Letters, 1990, 64( 11): 1196 -1199.
  • 8SHINBROT T, GREBOGI C, OTT E, et al. Using small perturbations to control chaos [J]. Nature, 1993, 363( 6428) : 411 -417.
  • 9PEHLIVAN I, UYAROGLU Y. Rikitake attractor and its synchronization application for secure communication systems[J]. Journal of Applied Sciences, 2007 , 7 ( 2) : 232 - 236.
  • 10LIAO T L, TSAI S H. Adaptive synchronization of chaotic systems and its application to secure communications [J]. Chaos, Solitons and Fractals, 2000, 11 (9) : 1387 - 1396.

同被引文献19

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部