摘要
针对无约束优化问题,提出一类谱共轭梯度法.谱共轭梯度法是对TS、GN及MPRP方法的修正,使得在任何线性搜索条件下都具有充分下降性.并且在Armijo型线性搜索条件下,证明了该类算法的全局收敛性.与GN、SFR及MPRP方法进行比较,数值结果表明:谱共轭梯度法是可行的,特别对于大规模无约束优化问题更有效.
A class of spectral conjugate gradient algorithms were presented for solving unconstrained optimization problems. These methods are the modifications of the TS, GN and MPRP methods, which possess sufficient descent property under any linear search rules. The global convergence of the given methods can be established under Armijo-type line search condition. By comparing these methods with the GN, SFR and PRP methods, the numerical results show that these methods are feasible, and more effective for the large scale unconstrained optimization problems.
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
北大核心
2014年第5期687-690,共4页
Journal of Liaoning Technical University (Natural Science)
基金
国家自然科学基金资助项目(11371071)
辽宁省自然科学基金资助项目(20102003)
辽宁省教育厅科学研究基金资助项目(L2013426)
渤海大学创新基金资助项目(201208)
关键词
无约束优化
谱共轭梯度法
全局收敛性
充分下降性
Armijo线性搜索
修正
步长
搜索方向
unconstrained optimization
spectral conjugate gradient method
global convergence
sufficientdescent property
Armijo linear search
modification
step-size
search direction