期刊文献+

基于群体特征的社交僵尸网络检测方法 被引量:9

Detection of socialbot networks based on population characteristics
下载PDF
导出
摘要 攻击者通过在社交网络中部署由大量社交僵尸账号组成的社交僵尸网络,对社交网络进行渗透,严重危害了社交网络和用户的信息安全.我们首次提出一种基于群体特征的社交僵尸网络检测方法.提取社交僵尸网络中账号注册时间集中、昵称相似和活跃时间一致3个群体特征,结合数据挖掘算法,设计一种社交僵尸网络的检测方法.在对新浪微博中48万个账号的检测实验中,检测出多个社交僵尸网络,共包含6 899个社交僵尸账号.较低的漏报率和误报率表明该方法对于社交僵尸网络和僵尸账号的检测是可行和有效的. An adversary can infiltrate online social networks (OSNs) on a large scale by deploying socialbot network, which is an army of socialbot accounts. This will endanger the information security of online social network and users. To solve the problem, we propose a detection method based on the 'population characteristics. We extract the following population characteristics: centralized created time, similar screen names, and coincident active time. On the basis of the extracted charateristics and by using date mining method, the method is proposed to detect socialbots networks. The method is used in a data set of 480 000 users of sina microblog and detects many socialbots networks which include 6 899 socialbots accounts. The low false negative rate and false positive rate indicate that the method is feasible and effective.
出处 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2014年第5期691-700,713,共11页 Journal of University of Chinese Academy of Sciences
基金 国家自然科学基金(61272481 61303239) 北京市自然科学基金(4122089)资助
关键词 社交僵尸账号 社交僵尸网络 社交网络 数据挖掘 socialbots accounts socialbot networks online social networks data mining
  • 相关文献

参考文献19

  • 1Song J, Lee S, Kim J. Spam filtering in Twitter using sender- receiver relationship [ C ] ff Proceeding of the 14th International Conference on Recent Advances in Intrusion Detection. Menlo Park, CA, USA, 2011:301-317.
  • 2Gao H, Hu J, Wilson C, et al. Detecting and characterizing social spare campaigns[ C ]//Proceedings of the lOth Annual Conference on Internet Measurement. New York, USA, 2010:35-47.
  • 3Yang C, Harkreader R C, Gu G. Die free or live hard.'? empirical evaluation and new design for fighting evolving twitter spammers [ C ] //Proceeding of the 14th International Conference on Recent Advances in Intrusion Detection. Menlo Park, CA, USA, 2011: 318-337.
  • 4Gjoka M, Kurant M, Butts C T, et al. Walking in faeebook: a case study of unbiased sampling of OSNs[ C]//Proceedings of the 27th IEEE International Conference on Computer Communications. San Diego, CA, USA, 2010:1-9.
  • 5Stringhini G, Kruegel C, Vigna G. Detecting spammers on social networks [ C ] // Proceedings of the 26th Annual Computer Security Applications Conference. Texas, USA, 2010: 1-9.
  • 6Tyagi A K, Aghila G. Detection of fast flux network based social bot using analysis based techniques [ C ]//Proceedings of 2012 International Conference on Data Science & Engineering. Kerala, India, 2012:23-26.
  • 7Lee K, Caverlee J, Webb S. Uncovering social spammers: social honeypots + machine learning[ C] //Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA, 2010 : 435-442.
  • 8Yan G. Peri-Watchdog: hunting for hidden botnets in the periphery of online social networks[J]. Computer Networks, 2012, 57 (2013) :540-555.
  • 9Han J, Kamber M. Data Mining: concepts and techniques [ M]. San Francisco: Morgan Kaufamnn, 2006.
  • 10Ratkiewicz J, Conover M, Meiss M, et al. Truthy: mapping the spread of astroturf in microblog streams [ C ]///Proceedings of the 20'h International Conference Companion on World Wide Web. Hyderabad, India, 2011:249-252.

二级参考文献102

  • 1Kaplan A M, Haenlein M. The Early Bird Catches the News: Nine Things You Should Know about Micro-blogging[ J]. Busi- ness Horizons, 2010,20 (october) : 1-9.
  • 2姜涛.Twitter开发者大会创始人及CEO详解Twitter[EB/OL].[2011-02-20].http://www.itxinwen.com/view/new/html/2010-04/2010-04-15-1135921.html.
  • 3阳淼.新浪微博用户数突破1亿今年将加大投入[EB/OL].中新网http://www.chinanews.com/it/2011/03-03/2880117.shtml,[2011-02-24].
  • 4Gaonkar S, Choudhury R R. Micro- blog: Map- casting From Mobile Phones to Virtual Sensor Maps[ Z]. 2007.
  • 5Krishnamurthy B, Gill P, Arlitt M. A Few Chirps about Twit- ter: WOSN '08, Seattle, Washington, USA, 2010 [ C ]. August 18, 2008.
  • 6Java A, Song X, Finin T, et al. Why We Twitter Understanding Microblogging Usage and Communities: Proceedings of the 9th WebKDD and 1 st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, San Jose, California, USA, 2007.
  • 7Cheong M. What are You Tweeting about: A Survey of Trending Topics about Twitter[ EB/OL ]. [ 2011-02-18 ]. http ://citese- erx. ist. psu. edu/viewdoc/download? doi = 10. 1. 1. 158. 4679&rep = rep18Xype = pdf.
  • 8Smith B G. Socially Distributing Public Relations: Twitter, Haiti, and Interactivity in Social Media [ J ]. Public Relations Review, 2010,36(4) :329-335.
  • 9Horn C, Analysis and Classification of Twitter Messages [ D ]. Graz University of Technology,2010.
  • 10Honeycutt C, Herring S C. Beyond Microblogging Conversation and Collaboration Via Twitter: Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009, Hawaii, U.S.A. , 2009.

共引文献168

同被引文献191

引证文献9

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部