期刊文献+

高阶积分微分方程小波数值解法 被引量:1

Wavelets numerical method for solving higher order integro-differential equations
下载PDF
导出
摘要 为求高阶Volterra积分微分方程的数值解,提出CAS小波法.利用CAS小波的正交性质,及小波矩阵的稀疏性,同时给出了CAS小波的积分算子矩阵,运用小波算子矩阵将高阶积分微分方程化为线性代数方程组,简化计算,提出了CAS小波收敛性定理.结果表明:随着点数的增多,数值解的精度也越来越高.数值算例验证了理论的正确性和方法的有效性. This paper considered a kind of higher order Volterra integro-differential equation by using CAS wavelet. Using the property of the CAS wavelet and the sparse of matrix, this study also provided the operational matrix of CAS wavelet. The CAS wavelet operational matrix was then utilized to reduce the higher order integro-differential equation to the algebraic equations and computation became convenient. The convergence of CAS wavelet was presented. The results show that the more points, the higher the precision of the numerieal solution. Finally, numerical examples were included to demonstrate the correctness Of the theory and validity of the approach.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2014年第4期531-534,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(11101282)
关键词 VOLTERRA积分微分方程 高阶 CAS小波 收敛性 小波矩阵 算子矩阵 精确解 数值解 Volterra integro-differential:equations higher order CAS wavelet convergence wavelets matrix operational matrix exact solution numerical solution
  • 相关文献

参考文献10

  • 1Yousefi S,Banifatemi A.Numerical solution of Fredholm integral equations by using CAS wavelets[J].Applied Mathematics and Computation,2006,2(6):513 -538.
  • 2Yildirim A.Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method[J].Computers and Mathematics with Applications,2008,56(12):3 175-3 180.
  • 3Maleknejad K.The numerical analysis of Adomaiu's decomposition method for non-linear Volterra integral and integm-differential equations[J].Intemational Journal of Engineering Science,1997,8(2a): 33-48.
  • 4任建娅,尹建华,耿万海.小波方法求一类变系数分数阶微分方程数值解[J].辽宁工程技术大学学报(自然科学版),2012,31(6):925-928. 被引量:12
  • 5尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 6Dehghan M,Shakourifar M,Hamidi A.The solution of linear and nonlinear systems of Volterra fimetional equations using Adomia Pade technique[J].Chaos Solutions Fractals,2009,3(9):2 509-2 521.
  • 7Sepehrian B.Single-term Walsh series method for the Volterra Integral-differential equations[J].Engineering Analysis with Boundary Elements,2004,28(34):1 315-1 319.
  • 8Sorkun H H.Approximate solutions of linear Volterra integral equation systems with variable coefficients[J].Applied Mathematical Modelling, 2010,34(1):3 451-3 464.
  • 9Han Danfu,Shang Xufeng.Numerical solution of integro-differential equations by using CAS wavelet operation matrix of integration[J]. Applied Mathematics and Computation,2007,194(24):460-466.
  • 10Saeedi H.A CAS wavelet method for solving nonlinear Fredholm integro-differential equation of fractional order[J].Communication in Nonlinear Science and Numerical Simulation,2011,16(5): 1 154-1 163.

二级参考文献14

  • 1陈景华.Caputo分数阶反应-扩散方程的隐式差分逼近[J].厦门大学学报(自然科学版),2007,46(5):616-619. 被引量:14
  • 2李弼程;罗建书.小波分析及其应用[M]北京:电子工业出版社,2005.
  • 3葛哲学;沙威.小波分析理论与Matlab实现[M]北京:电子工业出版社,2007.
  • 4Samko S G,Kilbas A A,Marichev O I. Fractional integrals and derivatives:theory and application applications[M].Am2 sterdam:Gordon and Breach,1993.
  • 5N'Géreékata G M. A Cauchy problem for some fractional abstract differential equations with fractional order with nonlocal conditions[J].Nonlinear Analysis,2009,(70):1873-1876.doi:10.1061/(ASCE)IR.1943-4774.0000211.
  • 6Gorenflo R,Mainardi F,Moretti D. Time fractional diffusion:a discrete random walk approach[J].Journal of Nonlinear Dynamics,2000,(03):129-143.doi:10.1007/s00203-009-0496-5.
  • 7Huang F,Liu F. The fundamental solution of the space-time fractional advection disersion equation[J].Journal of Applied Mathematics and Computing,2005,(02):339-350.
  • 8Rawashdeh E. Numerical solution of fractional integro-differential equations by collocation method[J].Applied Mathematics and Computation,2006,(07):176-186.
  • 9Saeedi H. A CAS wavelet method for solving nonlinear Fredholm integro-differential equation of fractional order[J].Commun Nonlinear Sci Numer Simulat,2011,(10):1154-1163.
  • 10Maleknejad K. An efficient numerical approximation for the linear class of Fredholm integro-differential equations based on Cattani's method[J].Commun Nonlinear Sci Numer Simulat,2011,(16):2672-2679.doi:10.1016/j.jtbi.2009.11.021.

共引文献25

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部