期刊文献+

基于新型Gregory三角面片的G^1连续曲面拼接

Research of G^1 smooth surface based on Gregory triangular patches
下载PDF
导出
摘要 为有效解决构造光滑曲面的三角网格插值问题,将Gregory四边形面片的易控性嫁接到Bézier三角面片上,提出一种新型双三次Gregory三角面片的插值模型。因为公共边界处的G1连续仅取决于2个相邻三角面片的控制点或向量,而无其它连续性限制,所以,该方法可有效消除使用Gregory四边形面片时需分割三角域产生的扭曲现象。实验结果表明,使用该模型对给定的三角网格进行插值,总能生成G1连续的光滑曲面。 To solve the triangular mesh interpolation problem of constructing a smooth surface effectively, a novel bi-cubic Gregory triangular patch for interpolation model was presented by grafting the controllability of Gregory quadrilateral patch into Bfzier triangular patch. Because G1 continuity at the common boundary depends only on two adjacent triangular patches' control point or vector without other continuity restrictions, the method can effectively eliminate the distortions of spliting triangular domain which emerge when Gregory quadrilateral patch in used. Experimental results show that when the new bi-cubic Gregory triangular patch is used in triangular mesh interpolation, a G1 continuous smooth surface can always be generated.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第9期3119-3122,共4页 Computer Engineering and Design
基金 国家863高技术研究发展计划基金项目(2013AA10230402) 中央高校基本科研业务费基金项目(QN2013054) 国家自然科学基金项目(61202188)
关键词 网格插值 光滑曲面 Gregory三角面片 G1连续 mesh interpolation smooth surface Gregory triangular patch G1 continuity
  • 相关文献

参考文献11

  • 1Farin G.Curves and surfaces for computer aided geometric design:A practical guide[M]4th ed.New York:Academic Press,1997:64-306.
  • 2郝茹,刘润涛.双四次有理Bezier曲面G^1光滑拼接算法[J].计算机工程与应用,2010,46(4):174-175. 被引量:4
  • 3高占恒,梁学章,高福顺,马婷.B样条曲面间G^1连续条件及局部格式构造问题[J].计算机辅助设计与图形学学报,2007,19(7):866-870. 被引量:2
  • 4施侃乐,雍俊海,孙家广,Jean-Claude Paul.基于周期B样条曲面的环状N边洞G^n连续性过渡[J].中国科学:信息科学,2011,41(9):1112-1125. 被引量:2
  • 5Farouki RT,Szafran N,Biard L.Construction and smoothing of triangular coons patches with geodesic boundary curves[J].Computer Aided Geometric Desgin,2010,27 (4):301-312.
  • 6Kouichi Konno,Hiroaki Chiykura.An approach of designing and controlling free-form surfaces by using NURBS boundary Gregory patches[J].Computer Aided Geometric Design,1996,13 (9):825-849.
  • 7ZHANG Lei,WANG Guo-jin.Computation of lower derivatives of rational triangular Bezier surfaces and their bounds estimation[J].Journal of Zhejiang University Science,2005,6 (1):108-115.
  • 8Barnhill R E,Gregory J A.Compatible Smooth Interpolation in Triangles[J].Journal of Approximation Theory,1975,15 (3):214-225.
  • 9Zhang Zhiyi,Wang Zhenhua,He Dongjian.A New Bi cubic Triangular Gregory Patch[C]//Proceedings of the 2008 International Conference on Computer Science and Software Engineering.WuHan:IEEE Computer Society Press,2008:1003-1007.
  • 10Hans Hagen,Gregory Nielson,Yasuo Nakajima.Surface design using triangular patches[J].Computer Aided Geometric Design,1996,13 (9):895-904.

二级参考文献33

  • 1严兰兰,宋来忠.双三次有理Bezier曲面G^1光滑拼接算法[J].宁波职业技术学院学报,2005,9(5):69-71. 被引量:1
  • 2梅向明 黄敬之.微分几何[M].北京:高等教育出版社,1992..
  • 3Milroy M J,Bradley C,Vickers G W,et al.G^1 continuity of B-spline surface patches in reverse engineering[J].ComputerAided Design,1985,27(6):471-478
  • 4Shi Xiquan,Wang Tianjun,Yu Piqiang.A practical construction of G^1 smooth biquintic B-spline surfaces over arbitrary topology[J].Computer-Aided Design,2004,36 (4):413-424
  • 5Shi Xiquan,Yu Piqiang,Wang Tianjun.G^1 continuous conditions of biquartic B-spline surfaces[J].Journal of Computational and Applied Mathematics,2004,144(1/2):251-262
  • 6Che Xiangjiu,Liang Xuezhang,Li Qiang.G^1 continuity conditions of adjacent NURBS surfaces[J].Computer Aided Geometric Design,2005,22(4):285-298
  • 7Zhao Nailiang,Ma Weiyin.Properties of G^1 continuity conditions between two B-spline surfaces[M] //Lecture Notes on Computer Science,Heidelberg:Springer,2006,4035:743-752
  • 8Kan-Le Shi,Jun-Hai Yong,Jia-Guang Sun,Jean-Claude Paul,He-Jin Gu.Filling n-sided regions with G 1 triangular Coons B-spline patches[J]. The Visual Computer . 2010 (6-8)
  • 9Guiqing Li,Hua Li.Blending parametric patches with subdivision surfaces[J]. Journal of Computer Science and Technology . 2002 (4)
  • 10Les A. Piegl,Wayne Tiller.Filling n-sided regions with NURBS patches[J]. The Visual Computer . 1999 (2)

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部