期刊文献+

适用于演化硬件的遗传算法 被引量:1

Genetic algorithm used in evolvable hardware
下载PDF
导出
摘要 为提高演化硬件在演化过程中的收敛速度,实现复杂的演化硬件,研究以Xilinx公司的Virtex-5Pro系列开发板作为硬件平台的基于SOPC的自演化系统。分析简单遗传算法与量子遗传算法对种群的适应度以及收敛速度的影响;实验中通过全加器电路和2位乘法器电路实现了自演化系统的验证。结合实例,对2种算法分别进行仿真,仿真结果表明,相对于标准遗传算法而言,量子遗传算法效率更高、更适应于进化复杂的大规模电路。 To improve the convergence of the evolvable hardware in the process of evolution and to realize the complex evolvable hardware, the evolvable hardware system which took Virtex-5 Pro FPGA development board as the hardware platform was studied. At the same time, the effects of the standard genetic algorithm and the quantum genetic algorithm on the convergence rate as well as fitness were analyzed. An adder circuit and a two-bit multiplier circuit were used to verify the evolvable hardware system. The two algorithms were emulated. It is proved that compared to the standard genetic algorithm, the quantum genetic algorithm is more suitable for the evolution of the complex large-scale circuit and the convergence rate is indeed improved.
作者 陈芹芹 姚睿
出处 《计算机工程与设计》 CSCD 北大核心 2014年第9期3244-3248,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(60871009) 南京航空航天大学基本科研业务费专项科研基金项目(XNA201288)
关键词 演化硬件 简单遗传算法 量子遗传算 适应度 收敛性 evolvable hardware standard genetic algorithm quantum genetic algorithm fitness convergence
  • 相关文献

参考文献10

二级参考文献49

共引文献57

同被引文献7

  • 1S Luka~ Evolvable Components: From theory to hardware implementations EMj. t3erlim Springer, 2004.
  • 2Garis HI). Evolvable Hardware.. Genetic programming of a darwin machine [C] /// Proceedings of the Interna- tional Comference in Linnsbruck. Austria: IEEE, 1993 : 441-449.
  • 3Sekanina L, Friedl S. An evolvable combinational unit for FPGAS[J]. Computing and Informatics, 2004, 23 (5) ~ 461-486.
  • 4Fonseca C M, Fleming P J. An overview of evolution- ary algorithms in multi-obiective optimization evolu- tionary computation[J]. IEEE Transactions on Evolu- tionary Computation, 1995, 3(1):1-16.
  • 5E. Zitzler et ak SPEA2: Improving the strength Pareto evo- lutionary algorithm for multi-objective optimization[C~// Proc EUROGEN 2001-Evolutionary Methods for De_sign Optimization and Control with Applications to Industrial Problems. Pennsvlvania..IEEE, 2001: 95-100.
  • 6肖晓伟,肖迪,林锦国,肖玉峰.多目标优化问题的研究概述[J].计算机应用研究,2011,28(3):805-808. 被引量:206
  • 7解双建,原亮,满梦华,周永学.基于虚拟可重构电路的演化平台设计[J].计算机技术与发展,2011,21(7):214-216. 被引量:5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部