期刊文献+

BP神经网络在电子鼻分类识别多品牌白酒中的应用研究 被引量:2

The Application Research of the BP Neural Network in Electronic Nose Classification and Recognition with Different Brands Liquor
下载PDF
导出
摘要 由于MQ3、MQ4、TGS813、TGS2620 4个金属氧化物半导体组成的气体传感器阵列对酒精气体及有机物交叉敏感,据此建立实时数据采集系统,并提出稳态特征值和动态特征值的提取方法,进而结合BP神经网络识别方法,通过所建立的电子鼻系统对3种不同品牌白酒进行了分类识别实验.结果表明:电子鼻系统对不同品牌白酒的识别率稳态特征时达90.0%,动态特征时达83.3%. Based on the sensors array made up of MQ3、MQ4、TGS813、TGS2620 four metal oxide semiconductor sensors which are cross sensitive to alcohol gas and organic,the real-time data acquisition was established in this pa-per,and the method of the steady and dynamic characteristic value extraction was proposed. Combined with BP neu-ral network recognition,three kinds of liquor were conducted classification experiments by the electronic nose sys-tem. The results show that the recognition rate of electronic nose system is up to 90. 0% under the steady character-istic and 83. 3% under the dynamic characteristic for the different brands of liquor.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2014年第4期358-361,377,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
关键词 电子鼻 白酒检测 传感器阵列 BP 神经网络 识别率 electronic nose liquor detection sensor array BP neural network recognition rate
  • 相关文献

参考文献13

  • 1Llobet E, Gualdron O, Vinaixa M, et al. Efficient feature selection for mass spectrometry based electronic nose ap- plicatons [ J ]. Chemometrics and Intelligent Labor-atory Systems ,2007,85 (2) :253-261.
  • 2Fu Jun,Li Guang, Qin Yugi, et al. A pattern recognition method for electronic noses based on an olfactory neural network [ J ]. Sensors and Actuators, B : Chemical, 2007, 125(2) :489-497.
  • 3E1 Barbri N, Amari A, Vinaixa M, et al. Building of a metal oxide gas sensor-based electronic nose to assess the fresh- ness of sardines under cold storage [ J ]. Sensors and Actu- ators, B : Chemical ,2007,128 ( 1 ) :235-244.
  • 4黄小燕,赵向阳,方智勇.电子鼻在气体检测中的应用研究[J].传感器与微系统,2008,27(6):47-49. 被引量:16
  • 5Tudu B,Jana A, Meda A, et al. Electronic nose for black tea quality evaluation by an incremental RBF network [ J ]. Sensors and Actuators, B : Chemical, 2009,138 ( 1 ) : 90-95.
  • 6马戎,周王民,陈明.基于传感器阵列与神经网络的气体检测系统[J].传感技术学报,2004,17(3):395-398. 被引量:18
  • 7Zhang Hongmei, Chang Mingxun, Wang Jun, et al. Evalua- tion of peach quality indices using an electronic no by MLR, QPST and BR network [ J ]. Sensors and Actuators, B : Chemical, 2008,134 ( 1 ) :332-338.
  • 8张覃轶,谢长生,阳浩,王林,张顺平.电子鼻模式识别算法的比较研究[J].传感技术学报,2005,18(3):576-579. 被引量:29
  • 9邓俊泳,冯勇建,吴青海.微气体传感器阵列及神经网络的应用[J].传感器技术,2002,21(8):44-46. 被引量:6
  • 10Panigrahi S, Balasubramanian S, Cub H, et al Design and development of a metal oxide based electronic nose for spoilage classification of beef [ J]. Sensors and Actuators, B : Chemical, 2006,119 ( 1 ) :2-14.

二级参考文献29

共引文献102

同被引文献15

  • 1王培培,祁婷婷,李曌,李秀娟,潘思轶.白云边年份酒香气成分分析[J].食品安全质量检测学报,2014,5(5):1475-1484. 被引量:6
  • 2Peng Q, Tian R G, Chen F R, et al. Discrimination of producingarea of Chinese Tongshan kaoliang spirit using electronic nosesensing characteristics combined with the chemometricsmethodsfJ]. Food Chemistry, 2015(178): 301-305.
  • 3Macias M M, Agudo J E,Manso A G,et al. A compact and lowcost electronic nose for aroma detection[J]. Sensors, 2013, 13:5528-5541.
  • 4Wang L C,Tang K T, Chiu S W, et al. A bio-inspired two-layermultiple-walled carbon nanotube - polymer composite sensorarray and a bio-inspired fast-adaptive readout circuit for aportable electronic nose[J]. Biosensors and Bioelectronics, 2011(26):4301-4307.
  • 5Macias M M,Agudo J E, Manso A G, et al. Improving shortterm instability for quantitative analyses with portableelectronic noses[J]. Sensors,2014,14: 10514-10526.
  • 6Pardo A, Camara L, Cabre J, et al. Gas measurement systemsbased on IEEE1451.2 standard[J]. Sensors and Actuators B,2016,116:11-16.
  • 7张顺平,雷涛,谢长生.一种顶空扩散一体式气味分析仪:CN201420531202[P]. 2014-09-16.
  • 8Zhang Q Y,Xie C S,Zhang S P,et al. Identification andpattern recognition analysis of Chinese liquors by doped nanoZnO gas sensor array [J]. Sensors and Actuators B, 2005,110:370-376.
  • 9王立川,张覃轶,黄伟.蒸发温度对电子鼻白酒评价的影响研究[J].传感器与微系统,2011,30(7):13-15. 被引量:1
  • 10周红标,张宇林,丁友威,刘佳佳.自适应概率神经网络及其在白酒电子鼻中的应用[J].智能系统学报,2013,8(2):177-182. 被引量:10

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部