摘要
运用Nevanlinna值分布的基本理论和整函数的相关性质,研究了一类高阶齐次线性微分方程解的增长性,在假设其系数均为整函数,且有1个满足杨-张不等式的极端情况的条件下,证明了方程的每1个非零解均具有无穷级.
By using the fundamental theory of value distribution of Nevanlinna and the property of entire function, the growth of solutions of the higher order linear differential equations is considered where coefficients are entire function. Assume that one of coefficients is extremal for Yang-Zhang inequality,it was proved that every nontrivial solution of the complex differential equation has infinite order.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2014年第4期399-402,共4页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(11171170)资助项目
关键词
整函数
杨-张不等式
微分方程
无穷级
entire function
Yang-Zhang inequality
differential equations
infinite order