期刊文献+

一类高阶线性微分方程解的增长级 被引量:2

On the Growth of Solutions of a Class of Higher Order Linear Differential Equations
下载PDF
导出
摘要 运用Nevanlinna值分布的基本理论和整函数的相关性质,研究了一类高阶齐次线性微分方程解的增长性,在假设其系数均为整函数,且有1个满足杨-张不等式的极端情况的条件下,证明了方程的每1个非零解均具有无穷级. By using the fundamental theory of value distribution of Nevanlinna and the property of entire function, the growth of solutions of the higher order linear differential equations is considered where coefficients are entire function. Assume that one of coefficients is extremal for Yang-Zhang inequality,it was proved that every nontrivial solution of the complex differential equation has infinite order.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2014年第4期399-402,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11171170)资助项目
关键词 整函数 杨-张不等式 微分方程 无穷级 entire function Yang-Zhang inequality differential equations infinite order
  • 相关文献

参考文献6

二级参考文献42

  • 1涂金,陈宗煊,曹廷彬,郑秀敏.某类高阶微分方程解的复振荡[J].江西师范大学学报(自然科学版),2005,29(1):8-11. 被引量:5
  • 2Hayman W. Meromorphic function [M]. Oxford: Clarendon Press, 1964.
  • 3Gundersen G Finite order solution of second order linear differ- ential equations [J]. Trans Amer Math Soc, 1988, 305: 415-429.
  • 4Hellenstein S, Miles J, Rossi J. On the growth of solutions of f'+gf'+hf =O [J]. Trans Amer Math Soc, 1991, 324: 693- 705.
  • 5Chen Zongxuan, Gao Shian. The complex oscillation theory of certain nonhomogeneous linear differential equations with tran- scendental entire coefficients [J]. J Math Analy App, 1993, 179: 403 -416.
  • 6Gundersen G. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates [J]. J London Math Soc, 1988, 37(2): 88-104.
  • 7Chen Zongxuan, Gao Shian. On the complex oscillantion of non-homogeous linear differential equations with meromorphic coefficients [J]. Kodai Math J, 1992, 15: 66-78.
  • 8Hayman, W.: Meromorphic Functions, Clarendon Press, Oxford, 1964.
  • 9Yang, L.: Value Distribution Theory, Translated and revised from the 1982.
  • 10Chinese original, Springer- Verlag, Berlin; Science Press, Beijing, 1993.

共引文献58

同被引文献17

  • 1陈宗煊.The growth of solutions of f"+e^(-z)f' + Q(z)f = 0 where the order (Q) = 1[J].Science China Mathematics,2002,45(3):290-300. 被引量:20
  • 2戴崇基,嵇善瑜.P级射线及其与Borel方向分布问的关系[J].上海师范大学学报:自然科学版,1980(2):16-24.
  • 3Hille E. Lectures on ordinary differential equations [ M ]. California, London, Don Mills, Ontario : Addison Wesley. Publishing Company, Reading, Massachusetts Menlo park, 1969.
  • 4Gundersen G G. Finite order solution of second order line- ar differential equations [ J]. Trans Amer Math Soc, 1988, 305 ( 1 ) :415-429.
  • 5Hellerstein S, Miles J, Rossi J. On the growth of solutions off″ + gf′ + hf= 0 [ J]. Trans Amer Math Soc, 1991,324 (2) :693-706.
  • 6Gundersen G G. On the question of whetherf″ + e-zf′ +B(z)f=O can admit a solutionf=0 of finite order [J]. Pro R S E,1986,102A(1/2) :9-17.
  • 7Barry P D. Some theorems related to the cos πp theorem [ J]. Proc London Math Soc, 1970,21 (3) :334-360.
  • 8Gundersen G G. Estimate for the logarithmic derivative of a meromorphic function, plussimilar estimates [ J ]. J London Math Soc,1988,37(2) :88-104.
  • 9Sons L R. An analogue of a theorem of W. H.J. Fuchs on gap series [J]. Proc London Math Soc,1970,21 (3):525- 539.
  • 10WU PengCheng,ZHU Jun.On the growth of solutions to the complex differential equation f''+Af'+Bf=0[J].Science China Mathematics,2011,54(5):939-947. 被引量:23

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部