摘要
当前的数字音频编码算法使用复杂的模型来最大化编码效率,同时使得失真最小。由于这种复杂性,对相同未压缩的输入音频,采用不同编码器压缩音频时往往会产生不同的输出音频。在统计分析了已压缩音频码流特征的基础上,采用SVM(支持向量机)分类器来确定最可能的13种编码器的矢量特性,提出了一种方法来辨识基于MPEG-1 Layer III(MP3)标准音频文件的编码器类型。测试结果表明准确度可以达到95%左右,并且可以通过加入新的码流特征来进一步提高辨识结果的准确性。因此,这种方法可以被视为一种辨识MP3编码器类型的通用方法。
Today's digital audio coding algorithms use sophisticated models to maximize the encoding rate while minimize theaudible distortlon.As a result of this complexity, different implementations of one encoding standard tend to produce varying outputstreams for the same uncompressed input data. The paper presents a method to distinguish between the encoding schemes used tocompress MPEG1 Layer-3 (MP3) audio files on the basis of the statistical features that can be extracted from the compressed streams.The method adopts a SVM machine learning classifier to determine the most likely encoder from a vector of 13 features.The experimentalresults show that the accuracy can be up to 95% ,and the accuracy of the identification results can be further improved by adding newcharacteristics from the code flow.So the method can be considered as a generic tool to increase the overall reliability of steganalysis ofMP3 files.
出处
《无线电通信技术》
2014年第5期57-60,共4页
Radio Communications Technology
基金
国家科技重大专项(2011ZX03002-004-02)
教育部高等学校博士学科点专项科研基金(20113305110002)
宁波市科技创新团队(2011B81002)
关键词
MP3编码器辨识
统计特征
隐藏分析
SVM分类器
MP3 eneoder classification
statistical characteristic
steganalysis
SVM classifier