期刊文献+

应用粒子群算法的重叠社区发现

Application of PSO algorithm in overlapping community detection
下载PDF
导出
摘要 随着大数据的出现,越来越多研究者对复杂网络的社区发现感兴趣,现有社区发现算法大多为检测不重叠社区的.提出一种基于粒子群算法的重叠社区划分法,初始粒子群时考虑非法划分的产生,用标签传播法调整每个粒子的编码.在一种经典数据集上测试,验证了该算法有效性,能快速检测出网络中潜在的社区结构. With the phenomenon of big data emerged.More and more researchers interested in finding community of complex network.But the existing community detection algorithms mostly assume that no overlaps exist.An overlapping community detection algorithm based on particle swarm optimization is proposed.In the initialization phase,a label propagation algorithm is utilized on optimization variables of each particle for coding adjustment,to avoid illegal community.In experiments,the algorithm is applied to two classic datasets to demonstrate the effectiveness of the algorithm,capability of detecting the potential community structure quickly in networks.
作者 王一萍 孙明
出处 《高师理科学刊》 2014年第5期41-44,共4页 Journal of Science of Teachers'College and University
关键词 粒子群 社区结构 标签传播 模块度 particle swarm community structure label propagation modularity
  • 相关文献

参考文献7

  • 1Girvan M, Newman M E J. Community structure in social and biological networks[J]. PNAS, 2001, 99 ( 12 ): 821-826.
  • 2Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69 ( 6 ): 066133.
  • 3Palla G, Derenyi I, Farkas I, et al. Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society[J]. Nature, 2005, 435:814-818.
  • 4Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69( 2 ): 026113.
  • 5Clauset A, Newman M E J, Moore C. Finding community structure in very large networks[J]. Phys Rev E, 2004, 70:066111.
  • 6王一萍,孙明.应用人工鱼群算法的重叠社区检测[J].计算机工程与科学,2013,35(10):131-136. 被引量:1
  • 7Eberhart R C, Kennedy J. A new optimizer using particles swarm theory[C]//Proc Sixth International Symposium on Micro Machine and HumanSeience, Nagoya: [s.n.], 1995:87-92.

二级参考文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部