期刊文献+

适用于植入式医疗的三线圈经皮能量传输

Three-Coil Transcutaneous Power Transmission for Implantable Medical Applications
下载PDF
导出
摘要 经皮能量传输方式是目前植入式医疗设备系统供电方式的研究热点,研究如何提高其传输效率和传输有效距离具有重大的应用价值.本文在分析互感耦合理论的基础上,结合互感耦合和强磁耦合的特点,提出了一种适用于经皮能量传输的三线圈耦合结构,并对其进行了相关的理论推导.结果表明:当耦合系数小于0.25时,三线圈耦合结构对耦合效率具有增强作用;在耦合系数为0.04时可提高将近一倍的效率.实验结果也很好地验证了理论分析结果. Transcutaneous energy transmission has been widely used for the power supply of the implantable medical de-vices .The most important study on the transcutaneous energy transmission is about how to improve its transfer efficiency and dis-tance .Based on the analysis of the mutual inductance coupling theory ,and combining with the characteristics of the strongly coupled magnetic resonances ,this paper proposed a three-coil coupling structure which is more suitable for transcutaneous energy transmis-sion .The theoretical analysis indicates that the proposed three-coil coupling structure strengthens the coupling efficiency when the coupling coefficient is less than 0 .25 and nearly doubles the efficiency when the coefficient is 0 .04 .The experimental results veri-fied the theoretical analysis .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第6期1090-1094,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60976026)
关键词 三线圈耦合 经皮能量传输 植入式医疗设备 three-coil coupling transcutaneous energy transmission implantable medical device
  • 相关文献

参考文献10

  • 1谢翔,张春,王志华.生物医学中的植入式电子系统的现状与发展[J].电子学报,2004,32(3):462-467. 被引量:17
  • 2俞航,姜来,李琰,纪震.电子胶囊中基于非对称结构的无源双向通信芯片设计[J].电子学报,2012,40(10):2107-2111. 被引量:2
  • 3Kendir G A,Liu Wentai,Wang Guoxing,et al.An optimal design methodology for inductive power link with Class-E amplifier[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2005,52(5):857-866.
  • 4Sodagar A M,Perlin G E,Yao Y,et al.An implantable 64-channel wireless microsystem for single-unit neural recording[J].IEEE Journal of Solid-State Circuits,2009,44(9):2591-2604.
  • 5Rush Alexander,Troyk Philip R.Power and data for a wireless implanted neural recording system[A].Proceedings of the 5th international IEEE EMBS Conference on Neural Engineering[C].Chicago,IL:IEEE,2011.507-510.
  • 6Chen P,Saati S,Varma R,et al.Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coil-ed LC sensor implant[J].Journal of Microelectromechanical Systems,2010,19(4):721-734.
  • 7Zhang Fei,Liu X Y,Hackworth,S A.In Vitro and in Vivo Studies on Wireless Powering of Medical Sensors and Implantable Devices[R].Bethesda,MD:IEEE/NIH Life Science Systems and Applications Workshop,2009.
  • 8Wang G X,Liu W T,Sivaprakasam M,et al.Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants[J].IEEE Transactions on Circuits and Systems,2005,52(10):2109-2117.
  • 9Cheon Sanghoon,Kim Yong-Hae,Kang Seung_youl ,et al.Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances[J].IEEE Transactions on Industrial Electronics,2011,58(7):2906-2914.
  • 10Kur Andre,Karalis Aristeidis,Moffatt Robert,et al.Wireless power transfer via strongly coupled magnetic resonances[J].Science,2007,317(5834):83-86.

二级参考文献52

  • 1[23]Schwan M A K,Troyk P R.High efficiency driver for transcutaneously coupled coils [A].Engineering in Medicine and Biology Society,Images of the Twenty-First Century,Proceedings of the Annual International Conference of the IEEE Engineering [C].USA:IEEE,1989.1403-1404.
  • 2[24]Scanlon W G,Burns B,Evans N E.Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz [J].Biomedical Engineering,IEEE Transactions on,2000,47(4):527-534.
  • 3[25]Arnold R,Manck O.An implantable low power mixed signal telemetry chip for measurements of the frequency dependent impedance of transplanted kidneys for rejection control [A].Low Power/Low Voltage Mixed-Signal Circuits and Systems,2001.(DCAS-01).Proceedings of the IEEE 2nd Dallas CAS Workshop [C].USA:IEEE,2001.3-6.
  • 4[26]Yamu Hu,Sawan M.CMOS front-end amplifier dedicated to monitor very low amplitude signal from implantable sensors [A].Circuits and Systems,2000.Proceedings of the 43rd IEEE Midwest Symposium [C].Lansing MI:IEEE,2000,1.298-301.
  • 5[27]Papathanasiou K,Ehmann T L.An implantable CMOS signal conditioning system for recording nerve signals with cuff electrodes [A].Circuits and Systems,Proceedings.ISCAS 2000 Geneva.The 2000 IEEE International Symposium [C].Geneva,Switzerland:IEEE,2000.281-284.
  • 6[28]Nielsen J H,Lehmann T.An implantable CMOS amplifier for nerve signals [A].Electronics,Circuits and Systems,2001.ICECS 2001.The 8th IEEE International Conference [C].USA:IEEE,2001.1183-1186.
  • 7[29]Enz C C,Temes G C.Circuit techniques for reducing the effects of op-amp imperfections:autozeroing,correlated double sampling,and chopper stabilization [J].Proceedings of the IEEE,1996,84(11):1584-1614.
  • 8[30]Kyung Hwan Kim,Sung June Kim.Noise performance design of CMOS preamplifier for the active semiconductor neural probe [J].Biomedical Engineering,IEEE Transactions on,2000,47(8):1097-1105.
  • 9[31]Harb A,Sawan M.Low-power CMOS implantable nerve signal analog processing circuit [A].Electronics,Circuits and Systems,2000.ICECS 2000.The 7th IEEE International Conference [C].Canada:IEEE,2000.911-914.
  • 10[32]Laizou P C.Signal-processing techniques for cochlear implants [J].IEEE Engineering in Medicine and Biology Magazine,1999,18(3):34-46.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部