期刊文献+

一种基于牛顿迭代的自适应复盲源分离算法 被引量:2

An Algorithm for Adaptive Complex Blind Source Separation Based on Newton Update
下载PDF
导出
摘要 为了解决源数动态变化情况下的复数盲源分离的问题,首先采用一种基于交叉验证技术的源数动态估计方法;利用牛顿迭代法推导了一种自适应的复数盲源分离算法,由于在分析过程不需要对复值源信号做任何限制或约束性的假设前提,因此该算法适合于分离服从正则或非正则分布的超高斯和亚高斯信号;提出的算法通过了源数动态变化仿真实验的验证.另外,在此基础上提出了一种基于复盲源分离的波达方位动态估计法,该方法适用于在源数未知且动态变化的情况下对目标源的波达方位进行动态估计. To solve the problems of complex blind source separation in the condition of time-varying numbers of source ,a dynamic number estimation method for complex-valued source based on cross-validation technique was proposed .In this method ,an adaptive complex blind source separation algorithm based on kurtosis of complex source is derived by using a Newton update method .Due to the innovative complex blind separation algorithm without any restrictions or constraints on source signals ,it can be used to separate sub-and sup-Gaussian sources with canonical or noncanonical distribution .The effectiveness of the proposed meth-ods was validated by simulation of time-varying numbers of complex source .Based on the experimental result ,an estimation method of dynamic direction of arrival (DOA ) was proposed to online estimate DOA orientation under the case that the number of sources is unknown in advance and time-varying .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第6期1125-1131,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.51309116 No.51179074) 集美大学科研基金资助项目(No.ZQ2013001 No.ZQ2013007 No.ZC2013012 No.S13060)
关键词 复盲源分离 交叉互验 牛顿迭代法 峰度 自适应 complex blind source separation cross validation Newton update algorithm kurtosis adaptive
  • 相关文献

参考文献18

  • 1BINGHAM E,HYVARINEN A.A fast fixed-point algorithm for independent component analysis of complex valued signals [J].International Journal of Neural Systems,2000,10(1):1-8.
  • 2WASFY B,RAGHURAM R,THOMAS Y.Complex adaptive ICA employing the conjugate gradient technique for signal separation in time-varying flat fading channels [J].Circuits,Systems,and Signal Processing,2010,29(3):469-480.
  • 3ARIE Y.Performance analysis of the strong uncorrelating transformation in blind separation of complex-valued sources [J].IEEE Transactions on Signal Processing,2012,60(1):478-483.
  • 4ERIKSSON J,KOIVUNEN V.Complex-valued ICA using second order statistics [A].Barros A.Machine Learning for Signal Processing[C].New York:IEEE Press,2004.183-191.
  • 5OLLILA E,KOIVUNEN V.Complex ICA using generalized uncorrelating transform [J].Signal Processing,2009,89(4):365-377.
  • 6SHEN H,MARTIN K.Algebraic solutions to complex blind source separation [A].Lieven D L.Lecture Notes in Computer Science [C].Heidelberg:Springer Verlag,2012.74-81.
  • 7NOVEY M,ADALI T.Complex ICA by negentropy maximization [J].IEEE Transactions on Neural Networks,2008,19(4):596-609.
  • 8NOVEY M,ADALI T.On extending the complex fastICA algorithm to noncircular sources [J].IEEE Transactions on Signal Processing,2008,56(5):2148-2154.
  • 9ADALI T,LI H L,NOVEY M.Complex ICA using nonlinear functions [J].IEEE Transactions on Signal Processing,2008,56(9):4536-4543.
  • 10ADALI T,KIM H,CALHOUN V.Independent component analysis by complex nonlinearities [A].Jose S.ICASSP [C].New York:IEEE Press,2004.525-528.

共引文献21

同被引文献14

  • 1冶继民,张贤达,朱孝龙.信源数目未知和动态变化时的盲信号分离[J].中国科学(E辑),2005,35(12):1277-1287. 被引量:20
  • 2李广彪,张剑云.基于分离度的步长自适应自然梯度算法[J].信号处理,2007,23(3):429-432. 被引量:9
  • 3Cardoso J F,Laheld B H.Equivariant adaptive source separation[J].IEEE Trans on Singal Processing,1996,44(12):3017-3029.
  • 4Yang H H.Serial updating rule for blind separation derived from the method of scoring[J].IEEE Trans on Signal Processing,1999,47(8):2279-2285.
  • 5Yuan L X,Wang W W.Variable step-size sign natural gradient algorithm for sequential blind source separation[J].IEEE Signal Processing,2005,12(8):589-592.
  • 6朱孝龙.盲自适应信号分离的并行实现方法研究[D].西安:西安电子科技大学,2002:1-35.
  • 7Ou Shifeng,Gao Ying,Jin Gang,et al.Variable step size algorithm for blind source separation using a combination of two adaptive separation systems[C]//International Conference on Natural Computation,2009:649-652.
  • 8von Hoff T P,Lindgren A G,Kaelin A N.Step-size control in blind source separation[C]//Independent Component Analysis and Blind Signal Separation,2000:509-514.
  • 9Amari S,Cichocki A,Yang H H.A new learning algorithm for blind signal separation[J].Neural Information Processing Systems,1996,8:757-763.
  • 10张朝柱,王鑫.一种改进型粒子群优化波达方向估计算法[J].信号处理,2009,25(8):1304-1308. 被引量:4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部