期刊文献+

基于神经网络的20辊轧机摩擦模型

Friction Model of 20-Hi Cold Rolling Mill Based on BP Neural Network
下载PDF
导出
摘要 精确的轧制模型是保证过程自动化系统高效、安全和稳定运行的前提。摩擦模型作为20辊轧机自适应轧制模型的子模型之一,是其重要的组成部分。本文就基于BP神经网络的摩擦模型的建立过程进行了详细的分析和阐述,为以后的生产维护工作打下良好的基础。 An accurate rolling model is a prerequisite to ensure high efficiency, safety and security of the process automation. Friction model, which is one of the sub models of Adaptive Rolling Mill Model, is a key. Aiming at the problem of the establishment of friction model based on BP neural network, analysis and statement is given in details. Then, it will be good foundation for the future maintenance work.
作者 杨梅 水碧明
出处 《酒钢科技》 2014年第3期40-43,共4页
关键词 20辊轧机 轧制模型 BP神经网络 摩擦模型 20-Hi cold rolling mill rolling model BP neural network friction model
  • 相关文献

参考文献3

二级参考文献14

  • 1周旭东,李连诗,王先进,傅作宝.人工神经网络板形板厚综合控制[J].轧钢,1995,12(2):16-19. 被引量:11
  • 2何纯玉,吴迪,王君,王国栋.中厚板轧制过程计算机控制系统结构的研制[J].东北大学学报(自然科学版),2006,27(2):173-176. 被引量:5
  • 3柳军,宋蕾.冷连轧计算机控制系统组成与功能分析[J].自动化技术与应用,2006,25(8):35-37. 被引量:5
  • 4Ginzburg V B.板带轧制工艺学[M].北京:冶金工业出版社,1998..
  • 5Sheets Charles. Upgrading legacy level 2 systems: Techniques and trials. Iron and Steel Technology, 2008, 5(1): 51 -62.
  • 6Shimoda Naoki, Okamoto Ken, Hailong Wan, Wenzhong Liu. Process control technology for thin strip production in Tangshan, China. Iron and Steel Technology, 2005, 2 (1): 33-41.
  • 7Yamaguchi Naoki, Tsugeno Masashi, Sato Seiji, Vizo- so Julio, Bonelo J. M., Gallardo Rafael Maestre. New Process Control System for the Sendzimir Revers- ing Cold Mill of Acerinox. AISE Steel Technology, 2001, (11-12): 45 -49.
  • 8Sungzoon Cho, Yongjung Cho, and Sungcbul Yoon. Reliable Roll Force Prediction in Cold Mill Using Multiple Neural Networks. IEEE Transactions on Neural Networks, 1997, 8(4).
  • 9丁修堃.轧制过程自动化[M].北京:冶金工业出版社,2005.57-72.
  • 10Osakada K,Yang GB. Neural Network for Process Planning of Cold- Forming. Anural of CIRP, 1991,40(1) : 243-246

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部