期刊文献+

基于Hilbert谱奇异值的滚动轴承故障诊断 被引量:4

Rolling Bearing Fault Diagnosis Based on Hilbert Spectrum Singular Value Decomposition
下载PDF
导出
摘要 提出一种基于Hilbert谱奇异值的故障特征提取方法,将其与支持向量机结合应用于轴承故障诊断。利用小波阈值降噪的方法对拾取的轴承故障振动信号进行滤波降噪,然后利用经验模式分解将降噪信号分解为若干个IMF分量之和,对每个IMF分量进行Hilbert变换得到振动信号的Hilbert谱,对Hilbert谱进行奇异值分解得到反映轴承状态特征的奇异值序列,再利用奇异值作为特征向量,应用支持向量机进行轴承故障诊断,并对不同核函数的诊断结果进行了分析比较。对正常轴承、内圈故障、外圈故障、滚动体故障的实际信号的诊断验证了该方法可的有效性。 A feature extraction method based on Hilbert spectrum and singular value decomposition in combination with the support vector machine (SVM) is proposed and applied to bearing fault diagnosis. Firstly, the wavelet threshold de-noising method is used to extract the fault information from vibration signals. Then, the de-noised signal is decomposed into several IMF components through the empirical mode decomposition method, Hilbert transform is applied to each IMF component and the Hilbert spectrum of the signals is obtained. The singular decomposition value method is used to the Hilbert spectrum to extract the time-frequency feature of the faulted bearing. Finally, the singular values are used as the feature vector to identify the different faults by using the SVM method with different kernel functions, and the diagnosis result is analyzed and compared. The results of the diagnosis of the bearing with the inner-race fault, ball fault and outer-race fault verify the effectiveness of the proposed method.
出处 《噪声与振动控制》 CSCD 2014年第5期140-144,共5页 Noise and Vibration Control
基金 国家自然科学基金项目(50975202)
关键词 振动与波 小波降噪 特征提取 故障诊断 Hilbert谱 奇异值分解 支持向量机 vibration and wave wavelet de-noising feature extraction fault diagnosis Hilbert spectrum singular value decomposition support vector machine
  • 相关文献

参考文献12

二级参考文献62

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2周瑾,肖兴明.小波变换在提升机制动信号识别中的应用[J].煤炭学报,2004,29(5):618-621. 被引量:7
  • 3戎舟,徐蕾.小波阈值去噪及其在LabVIEW中实现[J].自动化与仪表,2005,20(1):15-17. 被引量:14
  • 4梅宏斌.滚动轴承振动监测与诊断[M].北京:机械工业出版社,1996..
  • 5赵建,雷蕾,蒲小勤.分形理论及其在信号处理中的应用[M].北京:清华大学出版社,2008.
  • 6HUANG N E, SHEN Z, LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London, 1998, 454(1): 903-995.
  • 7HUANG N E, SHEN Z, LONG S R. A new view of nonlinear water waves: The Hilbert spectrum [J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457.
  • 8LIU B, RIEMENSCHNEIDER S, XU Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrmn [J]. Mechanical Systems and Signal Processing, 2006, 20. 718-734.
  • 9RAI V K, MOHANTY A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform [J]. Mechanical Systems and Signal Processing, 2007, 21: 2607-2615.
  • 10BABU T R, SRIKANTH S, SEKHAR A S. Hilbert-Huang transform for detection and monitoring of crack in a transient rotor [J]. Mechanical Systems and Signal Processing, 2008, 22: 905-914.

共引文献357

同被引文献41

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部