期刊文献+

基于多重卷积神经网络的大模式联机手写文字识别 被引量:7

Large pattern online handwriting character recognition based on multi-convolution neural network
下载PDF
导出
摘要 联机手写识别在日常生产生活中有着广阔的应用,模式识别也一直把其作为研究的重点。传统的识别方法是利用普通卷积神经网络技术,该方法在对小规模字符集联机手写文字识别时有着较高识别率,总体性能高,但在对大规模字符集识别时,识别率则大大降低。提出一种基于多重卷积神经网络的识别方法,旨在克服以往方法对大规模字符集识别时识别效率不高的问题,提高大规模字符集联机手写文字的识别率。系统使用随机对角Levenberg-Marquardt方法来优化训练,通过使用UNIPEN训练集测试该方法识别准确率可达89%,是一个有良好前景的联机手写识别方法。 Online handwriting character recognition is an important field in the research of pattern recognition. The tradi-tional recognition method is based on the common convolutional neural networks(CNNs)technology. It has an efficient recogni-tion rate for the small pattern character set online handwriting characters,but has low recognition rate for the large pattern character set recognition. A recognition method based on multi-convolutional neural networks(MCNNs)is presented in this pa-per to overcome the situation that the previous methods have the low recognition rate for large pattern character set and improve the recognition rate for the large pattern handwriting character set recognition. The stochastic diagonal Levenbert-Marquardt meth-od is used in the system for training optimization. The experimental results show that the proposed method has the recognition rate of 89% and has a good prospect for online handwriting character recognition for large scale pattern.
出处 《现代电子技术》 2014年第20期19-21,26,共4页 Modern Electronics Technique
基金 河南省科技厅科技攻关项目(122102210172)
关键词 模式识别 神经网络 卷积 文字识别 pattern recognition neural network convolution character recognition
  • 相关文献

参考文献8

  • 1吴鸣锐,张钹.一种用于大规模模式识别问题的神经网络算法[J].软件学报,2001,12(6):851-855. 被引量:23
  • 2徐姗姗,刘应安,徐昇.基于卷积神经网络的木材缺陷识别[J].山东大学学报(工学版),2013,43(2):23-28. 被引量:45
  • 3吕刚.基于卷积神经网络的多字体字符识别[J].浙江师范大学学报(自然科学版),2011,34(4):425-428. 被引量:4
  • 4PHAM D V. Online handwriting recognition using multi convo.lution neural networks [M]. Berlin Heidelberg: Springer,2012:310.319.
  • 5LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient. basedlearning applied to document recognition [C]// Proceeding ofIEEE. USA:IEEE,1998:2278.2324.
  • 6SIMARD P Y,STEINKRAUS Dave,PLATT John. Best practicesfor convolutional neural networks applied to visual documentanalysis [C]// International Conference on Document Analysisand Recognition(ICDAR). Los Alamitos:IEEE Computer So.ciety,2003:958.962.
  • 7SERMANET P,CHINTALA S,LECUN Y. Convolutional neu.ral networks applied to house numbers digit classification [C]//International Conference on Pattern Recognition. [S.l.]:IEEE,2012:3288.3291.
  • 8LECUN Y,BOTTOU L,ORR G B,et al. Efficient BackPropin neural networks: tricks of the trade, LNCS [M]. Heidel.berg:Springer,1998,1524:9.50.

二级参考文献26

  • 1谢永华,王克奇.基于分形理论木材表面缺陷识别的研究[J].林业机械与木工设备,2006,34(7):21-22. 被引量:10
  • 2齐巍,王立海.基于小波神经网络的木材内部缺陷类型识别的研究[J].林业科学,2006,42(8):63-68. 被引量:11
  • 3杨慧敏,王立海.基于超声波频谱分析技术的木材孔洞缺陷无损检测[J].东北林业大学学报,2007,35(8):30-32. 被引量:19
  • 4Lecun Y. Generalization and network design strategies [ R ]. Pfeifer:Connectionist Research Group, 1989.
  • 5Simard P Y, Steinkraus D, Platt J C. Best practices for convolutional neural networks applied to visual document analysis [ C ]//Proc of the Sev- enth International Conference on Document Analysis and Recognition. Washington:IEEE,2003:958-962.
  • 6Jarrett K, Kavukcuoglu K, Ranzato M A, et al. What is the best Multi-Stage architecture for object recognition? [ C ]//Proc of ICCV. Kyoto: IEEE ,2009:2146-2153.
  • 7Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[ J]. Proc of the IEEE, 1998,86 (11 ) :2278-2324.
  • 8马少平,夏莹,朱小燕.基于模糊方向线素特征的手写体汉字识别[J].清华大学学报(自然科学版),1997,37(3):42-45. 被引量:37
  • 9中国石油勘探与生产分公司.中国中西部前陆盆冲断带油气勘探文集[M].北京:石油工业出版社,2002..
  • 10LAMPINEN J, SMOLANDER S, KORHONEN M. Wood surface inspection system based on generic visual Features [ C ]//International Conference on Artificial Neural Networks. Paris : IEEE, 1995:8-13.

共引文献69

同被引文献53

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部