摘要
图G的最大平均度mad(G)是其所有真子图的平均度的最大值,即mad(G)=max{(2|E(H)|)/(|V(H)|)},H■G.文中证明了:若G为连通图,△(G)≤3,mad(G)<9/4,则λ_2~T(G)≤5.若G为连通图,△(G)≤4,mad(G)<5/2,则λ_2~T(G)≤7.
The maximum average degree of graph G,denoted by mad(G),is the maximum value of the average degree of all its real subgraph,so mad(G) = max{_(|V(H)|)/^(2|E(H)|),H■G.It is proved that if G was a connected graph,△(G) ≤ 3,mad(G) <9/4,thenλ_2~T(G)≤5,and if G is a connected graph,△(G)≤4,mad(G) <5/2,thenλ_2~T(G)≤7.
出处
《暨南大学学报(自然科学与医学版)》
CAS
CSCD
北大核心
2014年第5期499-502,共4页
Journal of Jinan University(Natural Science & Medicine Edition)
基金
国家自然科学基金(11271365)
山东省自然科学基金(ZR2012AM005)
关键词
(2
1)-全标号
最大平均度
连通图
(2,1)-total labeling
maximum average degree
connected graph