期刊文献+

含铌低硅TRIP钢板烘烤硬化行为分析 被引量:2

Bake-hardening behavior of low silicon TRIP steel with niobium
下载PDF
导出
摘要 模拟汽车板的烘烤工艺,研究了预变形量、烘烤温度和烘烤时间等对含铌低硅TRIP钢板组织和性能的影响,探讨了TRIP钢的烘烤硬化机理。结果表明,当预变形量小于4%时,烘烤硬化值随预变形量增大而增加,预变形量大于4%时反而降低了烘烤硬化效应;当烘烤温度低于170℃时,随烘烤温度的上升,烘烤硬化值明显增加,当烘烤温度高于170℃时,烘烤温度对烘烤硬化值影响不大;当烘烤时间在20min以内时,随烘烤时间的延长,烘烤硬化值显著增加,烘烤时间超过20min时,烘烤硬化值随烘烤时间的延长反而有所降低。通过对TRIP钢的烘烤硬化机理分析,建立了烘烤硬化值变化模型:ΔYBH=ΔYγ+ΔYb+ΔYγc+ΔYdp+ΔYc,其中沉淀析出碳氮化物数量和Cottrell气团数目变化引起的ΔYdp+ΔYc对烘烤硬化值变化影响相对显著。 In order to simulate baking process of automobile steel sheet ,baking treatment experiments at different pre-strains ,temperatures and times were carried out on low silicon TRIP steel with Nb . T he variation of the microstructures and bake-hardening values of the experimental steel during bak-ing treatment was investigated ,and the bake-hardening mechanism of TRIP steel was discussed .A model of variation of the bake-hardening value was built as follows :ΔYBH = ΔYγ + ΔYb+ ΔYγc+ΔYdp+ ΔYc ,in which effects of ΔYdp and ΔYc on the variation of the bake-hardening value (ΔYBH) are relatively strong ,which are the yield strength variations caused by the amount of carbide precipi-tation and Cottrell atmosphere .
出处 《武汉科技大学学报》 CAS 2014年第5期331-336,共6页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(50901014) 中央高校基本科研业务费专项资金资助项目(N120502005)
关键词 TRIP钢板 烘烤条件 组织 烘烤硬化 TRIP steel sheet baking condition microstructure bake-hardening
  • 相关文献

参考文献11

  • 1YangH K,ZhangZJ,ZhangZF.ComparisonofworkhardeninganddeformationtwinningevolutioninFe-22Mn-0.6C-(1.5Al)twinning-inducedplasticitysteels[J].ScriptaMaterialia,2013,68:992-995.
  • 2HiroshiM,FusatoK,KoheiH.MetallurgyofcontinuouslyannealedhighstrengthTRIPsteelsheet[J].SteelResearchInternational,2002,73(6):211-217.
  • 3UshildaK.Recentdevelopmentsinsteelsheets[J].ScandinavianJournalof Metallurgy,1999,28:33-39.
  • 4TangZY,DingH,DuLX.MicrostructuresandmechanicalpropertiesofSi-Al-MnTRIPsteelwithniobium microstructuresand mechanicalpropertiesofSi-Al-MnTRIPsteelwithniobium[J].JournalofMaterialsScienceand Technology,2007,23(6):790-794.
  • 5Rusinek A,KlepaczkoJR.ExperimentsonheatgeneratedduringplasticdeformationandstoredenergyforTRIP steels[J]. Materials & Design,2009,30(1):35-48.
  • 6ChoiID,BruceD M,KimSJ,etal.Deformationbehavioroflowcarbon TRIPsheetsteelsathighstrainrates[J].ISIJInternational,2002,42(12):1483-1489.
  • 7Zhang M,LiL,FuRY,etal.Continuouscoolingtransformationdiagramsandpropertiesofmicro-alloyedTRIPsteels[J].MaterialsScienceandEngineeringA,2006,438:296-299.
  • 8Spencer K,EmburyJ D,Conlon K T,etal.Strengtheningviatheformationofstrain-inducedmartensiteinstainlesssteels[J].MaterialsScienceandEngineeringA,2004,387-389:873-881.
  • 9BleckW,FrehnA,KechagiasE.ControlofmicrostructureinTRIPsteelsbyniobium[J].MaterialsScienceForum,2003,426-432:43-48.
  • 10RobertsonLT,HilditchTB,HodgsonPD.TheeffectofprestrainandbakehardeningonthelowcyclefatiguepropertiesofTRIPsteel[J].InternationalJournalofFatigue,2007,30(4):587-594.

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部