摘要
文〈1〉曾经得到了两个相互独立服从Paseal分布的随机变量的逆定理,现在我们把它推广到n个相互独立的随机变量的场合:即。本文的定理2和定理3。
In this Paper, We Consider the inverse theorem of the Pascal distribution of several random Variables. That is) Suppose that x 1,… xn are mutually independent random Variables and the Conditional Probability distribution of x1, x2, ..., xngiven by R-1∑n XR is Multibemuensional negative hypergeometric With parameter m1, m2, ...mn given by (1) --( 4 ) , then each of X1, Xn, …Xn has Pascal distribution With Parameters (λ1,m1) ( λ2, m2)… , ( λn, mn)respectiveln, nameln P (XR=iR) =(iR+mR-1 mR-1)λ 1R(1-λ)mR iR=0,1,2…,R=1,2…,n,0〈λ〈1
出处
《广东第二师范学院学报》
1993年第3期38-43,共6页
Journal of Guangdong University of Education
关键词
逆定理
Pascal分布
The inverse Theorem, Pascal distribution