期刊文献+

交织型层级复杂网 被引量:2

Interlacing layered complex networks
原文传递
导出
摘要 为研究两个异质关联网络复合后的结构特征与节点中心性特征,本文提出了交织型层级复杂网络的概念,可描述由两个具有部分相同节点,连接边属性近似的子网所构成的层级复杂网络,并定义了节点交织系数、路径交织系数和网络交织系数3种测度用于衡量两个子网之间的密切程度.针对该类网络,研究并改进了节点度中心性和介数中心性的计算方法,同时提出一种新的中心性指标—助联性,用于衡量子网的某一节点对另一子网联通性和流通性的助益.通过实验分析,验证了本文各类指标的有效性. In order to study the structural characteristic and node centrality of a structure composed of two related heterogeneous networks, in this paper, interlacing layered complex networks are defined as networks which are composed of two subnets having the partially same nodes and similar links. Also the definitions of the node interlacing coefficient,path interlacing coefficient and networks interlacing coefficient are given, so the intimacy level of two subnets can be measured definitely. Based on the definitions above, a node centrality algorithm of degree and betweenness is studied and redefined, while a new node centrality measuring index is given, which can be used to measure the supporting degree of a node in one subnet to the others' connectivity and negotiability. Finally, experimental results show that the proposed method is effective.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第19期1-10,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61174162) 全军军事学研究生基金(批准号:2012JY003-585)资助的课题~~
关键词 交织型层级复杂网 交织系数 节点中心性 interlacing layered complex networks interlacing coefficient node centrality
  • 相关文献

参考文献4

二级参考文献61

  • 1罗雪山.基于复杂系统理论的C^3I系统理论研究框架[J].系统工程与电子技术,1994,16(7):37-41. 被引量:3
  • 2王晓凯,侯朝桢.战术互联网的网络重组方法[J].火力与指挥控制,2005,30(2):29-32. 被引量:7
  • 3池丽平,杨纯斌,蔡勖.Stability of Random Networks under Evolution of Attack and Repair[J].Chinese Physics Letters,2006,23(1):263-266. 被引量:15
  • 4刘志硕,柴跃廷,申金升.信息共享环境下多级复杂供需链系统的库存成本分析[J].计算机集成制造系统,2007,13(5):984-989. 被引量:8
  • 5Dekker R. Applications of maintenance optimization models : a review and analysis[ J ]. Reliability Engineering and System Safety, 1996, 51(3) : 229 -240.
  • 6Wang H. A survey of maintenance policies of deteriorating systems [ J]. European Journal of Operational Research, 2002, 139 (3) : 469-489.
  • 7Jardine A K, Lin D, Banjcvie D. A review on machinery diagnostics and prognostics implementing condition-based maintenance [ J]. Mechanical Systems and Signal Processing, 2006, 20 (7) : 1483-1510.
  • 8Wu Y N, Cheng T C E. The impact of information sharing in a multiple-echelon supply chain[J]. Int. J. Production Economics, 2008, 115(1): 1-11.
  • 9Thomas K, Panayiotis M, Katerina P. The impact of replenishment parameters and information sharing on the bullwhip effect: A computational study [ J ]. Computers & Operations Research, 2008, 35( 1 ) :3657-3670.
  • 10Dodds P S, Watts D J, Sabel C F, Information exchange and the robustness of organizational networks [ J ]. PNAS, 2003, 100 (21) :12516-12521.

共引文献75

同被引文献22

  • 1CASTET J F, SALEH J H. Interdependent multi- layer networks: modeling and survivability analysis with applications to space-based networks [J]. PLOS ONE, 2013, 8(4): e60402.
  • 2WANG Zhen, SZOLNOKI A, PERC M. Self-organi- zation towards optimally interdependent networks by means of coevolution [J]. New Journal of Physics, 2014, 16: 033041.
  • 3JIANG J, LI W, CAI X. The effect of interdepend- ence on the percolation of interdependent networks [J]. Physica: A Statistical Mechanics and Its Appli- cations, 2014, 410: 573-581.
  • 4AOKI T, YAWATA K, AOYAGI T. Self-organiza- tion of complex networks as a dynamical system [J]. Physical Review: E, 2015, 91(1): 012908.
  • 5STIPPINGER M. Enhancing resilience of interdepend- ent networks by healing [J]. Physica: A Statistical Mechanics and Its Applications, 2014, 416: 481-487.
  • 6SANTOS M D, DOROGOVTSEV S N, MENDES J F. Biased imitation in coupled evolutionary games in interdependent networks[R/OL]. [2015-12-26]. ht- tp: //www. nature, com/articles/srep044367 message -global: removeWT, ec_id: SREP-639-20140325.
  • 7WANG Baokui, PEI Zhenhua, WANG Long. Evolu- tionary dynamics of cooperation on interdependent net- works with the Prisoner' s Dilemma and snowdrift game [J]. EPL, 2014, 107(5): 58006.
  • 8高洋,李丽香,彭海朋,杨义先,张小红.多重边复杂网络系统的稳定性分析[J].物理学报,2008,57(3):1444-1452. 被引量:16
  • 9陶少华,赵会洋,平源,高景菊.基于吸引因子的无尺度网络演化模型研究[J].复杂系统与复杂性科学,2008,5(2):88-92. 被引量:9
  • 10徐兰芳,习爱民,范小峰.计算机网络病毒传播模型SIRH[J].计算机工程与科学,2009,31(1):4-6. 被引量:10

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部