摘要
本文将传统PM(Preisach-Mayergoyz)模型由一维介质拓展到二维介质,引入迟滞细观弹性单元概念,得到迟滞变化的应力应变关系.并采用一阶有限差分方程进行了声场计算和分析,发现空间声场中含有明显的高阶奇次谐波成分.对接收到的全波信号进行滤波、放大、时间反转后加载到接收换能器对应阵元上再进行发射,观察到高次谐波在微损伤区域实现聚焦.这为利用非线性高次谐波检测微损伤提供了可能的途径,也为疲劳损伤等缺陷的早期检测提供了理论和方法依据.
In this paper, PM(Preisach-Mayergoyz) model in one dimension is extended to two dimensions. Hysteretic stressstrain relation could be obtained when hysteretic mesoscopic elastic unit(HMEU) is considered.The sound field is calculatedusingafirst-orderfinitedifferenceequation, andthehigh-odd-orderharmonicwavescanbefoundapparentlyin the sound field. Then, the received full waves are filtered,amplified, time-reversed, and re-emitted through corresponding receiving transducers. The high-order harmonic waves focus on the micro-damage zone. So this method can be used to detect the micro-damages by nonlinear high-order harmony waves. Furthermore, it also provides a method of the early detection of fatigue damages.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2014年第19期163-169,共7页
Acta Physica Sinica
基金
国家自然科学基金(批准号:11274337)资助的课题~~
关键词
非线性声学
高次谐波
迟滞应力应变关系
时间反转
nonlinear acoustics
high-order harmonic wave
hysteretic stress-strain relationship
time reversal