期刊文献+

基于拉普拉斯方程的任意形状热斗篷研究与设计 被引量:2

Research and design of thermal cloak with arbitrary shape based on Laplace's equation
原文传递
导出
摘要 如何灵活地控制和操纵热流是目前研究的热点.本文基于拉普拉斯方程提出了一种设计任意形状热斗篷的方法.对于形状规则的热斗篷,在特定边界条件下求解拉普拉斯方程得到了斗篷区域材料的热导率分布解析表达式;对于不规则形状的热斗篷,通过数值求解拉普拉斯方程得到了斗篷区域材料的热导率参数分布.全波仿真结果表明,所设计的二维和三维任意形状热斗篷内部隐身区域的热通量为零,从而具有热保护功能;同时,热流绕过斗篷后温度场恢复原来的分布,实现了完美隐身功能.这项研究为解决热斗篷内外边界非共形问题提供了一种可行的方法,对热保护器件的设计和制备有指导意义. How to control and manipulate the heat flow in a flexible way is a hotspot of current research. Based on Laplace's equation, we propose a method to design thermal cloak of arbitrary shape. For a thermal cloak of regular shape,the thermal conductivity expression is derived by analytically solving the Laplace's equation under certain boundary conditions; for a thermal cloak of irregular shape, the distribution of thermal conductivity can also be obtained based on the numerical solution of Laplace's equation. Results of full wave simulation show that no heat fluxes emerge in the internal stealth area both for two-dimensional and three-dimensional thermal cloak of arbitrary shape. Meanwhile, the heat fluxes return to their original pathways, resulting in a perfect thermal invisible effect. This research provides a feasible method to design a thermal cloak of non-conformal cross section and has a guiding significance for the design and manufacturing of thermal cloak.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第19期206-211,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61161007,61261002) 云南省自然科学基金重点项目(批准号:2013FA006) 教育部博士点基金(批准号:20135301110003,20125301120009) 中国博士后基金(批准号:2013M531989)资助的课题~~
关键词 热斗篷 拉普拉斯方程 任意形状 超材料 thermal cloak Laplace equation arbitrary shape metamaterials
  • 相关文献

参考文献21

  • 1Shelby R A, Smith D R, Schultz S .2001, Science 292 77.
  • 2Pendry J B .2009, Phy. Rev. Lett. 85 3966.
  • 3Yang J 3, Huang M, Yang C F, Xiao Z, Peng J H .2009, Optics Express 17 19656.
  • 4吴群,张狂,孟繁义,李乐伟.2010.物理学报 59 6071.
  • 5Zheludev N I, Kivshar Y S .2012, Nature Materials 11 917.
  • 6Pendry J B, Schurig D, Smith D R .2006, Science 312 1780.
  • 7Hu J, Zhou X M, Hu G K .2009, Optics Express 17 1308.
  • 8Luo X Y, Liu D Y, Liu J J, Dong J F .2014, Chin. Phys. B 23 054101.
  • 9Yan M, Yan W, Qiu M .2008, Phys. Rev. B 78 125113.
  • 10Li C, Meng X K, Liu X, Li F, Fang G Y, Chen H Y, Chan ( T .2010, Phys. Rev. Lett. 105 233906.

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部