摘要
针对隐写分析中特征维数过高的问题,提出一种特征加权支持向量机音频隐写分析算法。利用特征相关性对原始特征进行优化选择,利用增益比率法计算特征权重,提出了改进特征加权支持向量机。与常用的C-SVM进行的对比实验表明,该方法能够有效提高检测率,降低时间复杂度。
in view of the characteristics of high dimension problems, put forward a feature weighted support vector machine ( SVM ) audio steganographic analysis algorithm.Using correlation characteristics of original features optimized choice, using the gain ratio method to calculate weight characteristics, a feature weighted support vector machine ( SVM ) is presented.With the commonly used C - SVM through the contrast experiments show that this method can effectively increase the detection rate, reduce the time complexity.
出处
《网络安全技术与应用》
2014年第9期45-46,共2页
Network Security Technology & Application
关键词
音频隐写分析
特征融合
特征相关性
加权
增益比率法
支持向量机
audio steganographic analysis
Feature fusion
Characteristics of correlation
Weighted
Gain ratio method
Support vector machine ( SVM )