期刊文献+

社会体育调查中缺失数据处理方法的比较研究 被引量:2

Missing Data Processing Method in Social Sports Investigation
下载PDF
导出
摘要 在社会体育调查资料统计处理的过程中,经常面对缺失数据的问题.以2001年沈阳市500名40 ~ 70岁城市妇女关于参加体育锻炼活动和体力劳动的问卷调查数据为实例,对5种常用处理缺失数据的插补方法进行了比较分析.首先介绍5种缺失数据插补方法并阐述利与弊,然后结合调查实例进行描述性指标比较和回归分析比较,最后提出研究者在选用插补方法时应该综合考虑缺失数据所占比例、研究能力和时间限制等因素寻找最适宜的插补方法. In the process of social sports statistical processing of the survey data, we are often faced with the problem of missing data. In this paper, taking 500 40-year-old to 70-year-old urban women in Shenyang City participatiing in the sur- vey data on physical exercise and physical activity in 2001 as an example, five kinds of commonly missing data imputation methods were compared and analyzed. At first, it introduced five kinds of missing data imputation methods and described the pros and cons, and then conducted descriptive examples and regression analysis and comparison of comparative indica- tors combined surveys. It concludes that in the selection of the interpolation method, the researchers should take into ac- count the percentage of missing data proportion, research capacity, time constraints and other factors to find the most suit- able interpolation method.
出处 《沈阳体育学院学报》 CSSCI 北大核心 2014年第4期46-49,共4页 Journal of Shenyang Sport University
基金 2013年辽宁省教育厅科学研究一般项目 编号:W2013231
关键词 缺失数据 插补方法 统计推断 数据分析 missing data interpolation method statistical inference data analysis
  • 相关文献

参考文献8

二级参考文献45

  • 1周艺彪,赵根明,姜庆五.多重填充方法评估日本血吸虫病感染率[J].中国公共卫生,2004,20(3):286-288. 被引量:4
  • 2周艺彪,姜庆五,赵根明.不完全数据处理方法——多重填充[J].中华预防医学杂志,2004,38(6):424-426. 被引量:4
  • 3余竞.一种选择性随机缺失数据的检验和插补方法[J].统计与决策,2005,21(09S):123-125. 被引量:1
  • 4Witten IH,Frank E.数据挖掘实用机器学习技术[M].2版.北京:机械工业出版社.2006:126-324.
  • 5Ramoni M, Sebastiani P. Robust Bayes classifiers [J]. Artificial Intelligence, 2001, 125(122): 209-26.
  • 6Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks fi'om data [J]. Machine Learning, 1992, 9: 309-47.
  • 7Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers [J]. Mach Learn, 1997, 29 (2-3): 131-63.
  • 8Langley P, Sage S. Induction of selective Bayesian classifiers [C]. In: Proc of the 10th Confon Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 1994, 399-406.
  • 9Singh M, Provan GM. Efficient learning of selective Bayesian network classifiers [C]. In: Proc of the 13th Int'l Conf on Machine Learning. San Francisco: Morgan Kaufman, 1996.
  • 10Kohavi R, John GH. Wrappers for feature subset selection [J]. Artif Intell, 1997, 97 (122): 273-324.

共引文献129

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部