期刊文献+

基于区间值模糊剩余蕴含算子的广义区间值模糊粗糙集模型

Generalized Interval-valued Fuzzy Rough Sets Based on the Interval-valued Fuzzy Residual Implicator
原文传递
导出
摘要 把粗糙集理论和区间值模糊集理论结合起来,利用粗糙集理论的构造性方法,提出了一种广义区间值模糊粗糙集理论模型。首先,利用区间值模糊剩余蕴含算子和它的对偶算子,定义了一种广义上下区间值模糊粗糙集近似算子。然后,利用该蕴含算子的性质,讨论了该模型上下近似算子的一系列性质。最后,确立了一些特殊的区间值模糊关系和区间值模糊粗糙集近似算子的联系。 In this paper, we present a general study of general interval-valued fuzzy rough sets integrating the rough set theory with the interval-valued fuzzy set theory by constructive approach. Firstly, by employing the interval-valued fuzzy residual implieator and its dual operator, a generalized upper and lower interval-valued fuzzy rough approximation operators with respect to an arbitrary interval-valued fuzzy approximation space are defined. Then some interesting properties of interval-valued fuzzy rough approximation operators are examined based on the properties of interval-valued fuzzy residual implieator on L1. Finally, the connections between special types of interval-valued fuzzy relations and interval-valued fuzzy rough approximation operators are also established.
出处 《模糊系统与数学》 CSCD 北大核心 2014年第4期144-151,共8页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11161041) 西北民族大学中央高校基本业务费专项资金资助项目(31920130012) 西北民族大学中青年科研基金资助项目(12XB29)
关键词 区间值模糊集 区间值模糊关系 区间值模糊粗糙近似算子 区间值模糊近似空间 Interval-valued Fuzzy Sets Interval-valued Fuzzy Relation Interval-valued Fuzzy Rough Approximation Operators Interval-valued Fuzzy Approximation Spaces
  • 相关文献

参考文献12

  • 1Pawlak Z. Rough sets[J]. International Journal of Computer Information Science, 1982,11:145-172.
  • 2Pawlak Z. Rough sets-Theoretical aspects to reasoning about data [M]. Boston:Kluwer Academic Publisher, 1991.
  • 3Turksen L B. Interval valued fuzzy sets based on normal forms [J]. Fuzzy Sets and Systems, 1986,80:191-210.
  • 4Zadeh L A. Fuzzy sets[J]. Information and Control, 1965,8 : 338- 353.
  • 5Gorzalczany M D. A method of inference in approximate reasoning based on interval-valued fuzzy sets[J]. Fuzzy Sets and Systems,1987,21:1-17.
  • 6Bustince H. Indicator of inclusion grade for interval-valued fuzzy sets, application to approximate reasoning based on interval-valued fuzzy sets[J]. International Journal of Approximation Reasoning, 2000,23 : 137 - 209.
  • 7Turksen L B, Zhong Z. An approximate analogical reasoning schema baded on similarity measures and interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 1990,34: 323-346.
  • 8Cornelis C, Deschrijver G, Kerre E E. Implication in intuitionistic fuzzy and interval valued fuzzy set theory: Constructive, classification, application[J]. International Journal of Approximation Reasoning, 2004,35 : 55- 95.
  • 9Zhang H Y, Zhang W X, Wu W Z. On characterization of genernalized interval-valued fuzzy rough sets on two universes of discourse[J]. International Journal of Approximate Reasoning, 2009,51 : 56- 70.
  • 10Bustince H, Burillo P. Mathematical analysis of interval-valued fuzzy relations: Application to approximate reasoning[J -. Fuzzy Sets and Systems, 2000,113 : 205 - 219.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部