期刊文献+

元胞驻留视频群体状态预报方法 被引量:1

Inner-ellular automata method for video pedestrian state forecasting
下载PDF
导出
摘要 视频场景人群状态预报是防止公共场所安全事故的一种重要措施.为此提出了一种视频场景群体状态预报模型.该模型使用格内驻留元胞自动机(inner-grid parking cellular automata,IPCA)模型预报视频中群体状态.首先,通过光流法进行运动跟踪作为IPCA的输入特征对场景进行建模,并根据特征点的运动状态自适应地调整其在元胞格内的驻留时间以提高预报精度;其次,通过分析IPCA模型的预测结果判断群体微团间的相互作用得到视频帧的状态信息,从而达到对场景中人群状态进行预报的目的;最后,利用当前场景的状态信息对该场景的预报输出进行反馈校正,使模型能够及时地反映场景中群体状态的变化,该模型不依赖于具体的视频帧,以微团结构的碰撞作为异常检测依据.实验结果表明,与传统的检测方法相比,该预报模型能够提前预报视频场景中的异常状态,并具有较好的准确性. Forecasting pedestrian states with the help of video analysis is a significant mean to prevent accidents in public places.An improved Inner-grid Parking Cellular Automata( IPCA) model is proposed to forecast pedestrian state.Motion tracking and scenario modeling are firstly achieved by optical flow method,and then motion states of pedestrian are used to adjust parking time in cellular adaptively to improve forecasting accuracy.Here,the state of an incoming video frame is acquired by analyzing the interaction between micelles,which is provided by the forecasting result of IPCA.After that,a feedback algorithm is employed to revise the forecasting result so that the model could reflect precisely the change of pedestrian state in the scenario.A criterion is also proposed to judge the abnormal state of a video frame,which is collision between two micelles.Compared to other traditional detection methods,IPCA based model has a good ability in predicting the abnormal state ahead of time and obtaining better accuracy.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第9期25-30,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(61171184 61201309)
关键词 视频处理 元胞自动机 格内驻留 状态检测和反馈 状态预报 video processing cellular automata inner-grid parking state detection and feedback state forecasting
  • 相关文献

参考文献12

  • 1BURSTEDDE C, KLAUCK K, SCHADSCHNEIDER A et al. Simulation of pedestrian dynamics using a two- dimensional cellular automaton [ J ]. Physica A: Statistical Mechanics and its Applications, 2001, 295(3) : 507-525.
  • 2YAMAMOTO K, KOKUBO S, NISHINARI K. Simulation for pedestrian dynamics by real-coded cellular automata (RCA) [J]. Physica A: Statistical Mechanics and its Applications, 2007, 379(2): 654-660.
  • 3HAO Y, GUAN Hongzhi, ZHANG Juan, et al. Study on bi-direction pedestrian flow using cellular automata simulation[ J]. Physica A : Stati~tieal Mechanics and its Applications, 2010, 389(3): 527-539.
  • 4WANG Dalong, KWOK N M, JIA Xiuping, et al. A cellular automata based crowd behavior model[ C ]//IEEE Conference on Artificial Intelligence and Computational Intelligence. Sanya: IEEE, 2010:218-225.
  • 5AMOROSO S, YALE N P. Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures [ J ]. Joumal of Computer and System Sciences, 1972, 6(5) : 448-464.
  • 6MA J, LOS M, SONG W G, et al. Modeling pedestrian space in complex building for efficient pedestrian traffic simulation[J]. Automation in Construction, 2013, 30: 25-36.
  • 7MEHRAN R, OYAMA A, SHAH M. Abnormal crowd behavior detection using social force model [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 935-942.
  • 8MORRIS B, TRIVEDI M. Learning trajectory patterns by clustering: Experimental studies and comparative evaluation[ C]//IEEE Conference on Computer Vision and Pattern Recognition. Miami : IEEE, 2009:312-319.
  • 9JUNSEOK K, LEE K M. A unified framework for event summarization and rare event detection [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Providence : IEEE, 2012 : 1266-1273.
  • 10YANG Cong, YUAN Junsong, LIU Ji. Sparse reconstruction cost for abnormal event detection [ C ]// IEEE Conference on Computer Vision and Pattern Recognition. Colorado: IEEE, 2011 : 3449-3456.

二级参考文献15

  • 1Albiol A, Silla M J, Albiol A, Mossi J M. Video analy- sis using corner motion statistics. In: Proceedings of llth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Miami, USA: IEEE, 2009.31-37.
  • 2Srivastava S, Ng K K, Delp E J. Crowd flow estimation us- ing multiple visual features for scenes with changing crowd densities. In: Proceedings of 8th IEEE International Con- ference on Advanced Video and Signal-Based Surveillance. Klagenfurt, Austria: IEEE, 2011. 60-65.
  • 3Chan A B, Vasconcelos N. Modeling, clustering, and seg- menting video with mixtures of dynamic textures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5): 909-926.
  • 4Wu S D, Moore B E, Shah M. Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes. In: Proceedings of IEEE Computer Society Conference oil Computer Vision and Pattern Recognition. San Prancisco, CA, USA: IEEE, 2010. 2054-2060.
  • 5Helbing D, Moln~r P. Social force model for pedestrian dy- namics. Physical Review, 1995, 51(5): 4282-4286.
  • 6Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. Miami, Florida, USA: IEEE, 2009. 935- 942.
  • 7Wang B, Ye M, Li X, Zhao F J, Ding J. Abnormal crowd be- havior detection using high-frequency and spatio-temporal features. Machine Vision and Applications (Springer). [Online], available: http://www.springerlink.com/content/ vr38484834416985/, Janulary 11, 2012.
  • 8Horn B K P, Schunck B G. Determining optical flow. Arti- ficial Intelligence, 1981, 17(1-3): 185-203.
  • 9Khatri C G, Mardia K V. The von Mises-Fisher matrix dis- tribution in orientation statistics. Journal of the Royal Sta- tistical Society: Series B (Methodological), 1977, 39(1): 95 -106.
  • 10Comaniciu D, Meer P. Mean shift.: a robust approach to- ward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.

共引文献16

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部