期刊文献+

混合人工鱼群算法在约束非线性优化中的应用 被引量:3

The application of hybrid fish swarm algorithm for constrained nonlinear optimization
下载PDF
导出
摘要 为了解决具有约束的非线性优化问题,本文将增广拉格朗日乘子法和鱼群算法相结合用于非线性问题的全局优化,即用人工鱼群算法寻找增广拉格朗日函数的近似最优解,并将该近似解用于拉格朗日乘子和惩罚因子等参数的更新.同时,简要分析了人工鱼群算法的随机收敛性.仿真结果证明,与自适应惩罚遗传算法相比,该混合算法在解决约束优化问题中具有优越性和有效性. A hybrid algorithm which combines the augmented Lagrangian multiplier method with the fish swarm algorithm is presented to solve the problem of constrained nonlinear optimization.The method approximately solves the optimal solution of the augmented Lagrangian function with the fish swarm algorithm,and the solution is applied to update the Lagrangian multipliers and penalty parameters.Stochastic convergence of the artificial fish swarm is analyzed.Compared with an adaptive penalty method for genetic algorithms,simulation results verify the superiority and validity of the proposed hybrid algorithm.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第9期55-60,共6页 Journal of Harbin Institute of Technology
基金 国家重点基础研究发展规划资助项目(20126131890302) 航空科学基金资助项目(20125853035)
关键词 增广拉格朗日乘子法 增广拉格朗日函数 鱼群算法 随机收敛性 augmented Lagrangian multiplier method augmented Lagrangian function fish swarm algorithm stochastic convergence
  • 相关文献

参考文献20

  • 1BARD J F. Practical bilevel optimization: algorithms and applications [ M ]. Dordrecht: Kluwer Academic Publishers, 1998.
  • 2FLOUDAS C A. Deterministic global optimization: theory, methods and application [ M ]. Dordrecht: Kluwer Academic Publishers, 1999.
  • 3SHERALI H D, ADAMS W P. A reformulation-linearization technique for solving discrete and continuous nonconvex problems [ M ]. Dordrecht: Kluwer Academic Publishers, 1999.
  • 4TAWARMALAN1 M, SAHINIDIS N V. Convexification and global optimization in continuous and mixed-integer nonlinear programming [ M ]. Dordrecht : Kluwer Academic Publishers, 2002.
  • 5TUY H. Convex analysis and global optimization [ M ]. Dordrecht: Kluwer Academic Publishers, 1998.
  • 6ZABINSKY Z B. Stochastic adaptive search for global optimization [ M ]. Dordrecht: Kluwer Academic Publishers, 2003.
  • 7杜学武,靳祯.不等式约束优化问题的一个精确增广拉格朗日函数[J].上海交通大学学报,2006,40(9):1636-1640. 被引量:5
  • 8HESTENES M R. Muhiplier and gradient methods [ J ]. Optimization Theory and Applications, 1969, 4 5 ) : 303-320.
  • 9POWELL M J D. A method for nonlinear constraints in minimization problems optimization [ M ]. New York : Academic Press, 1969:283-298.
  • 10ROCKAFELLAR R T. The multiplier method of Hestenes and Powell applied to convex programming [ J ]. Optimization Theory and Applications, 1973, 12 (6) : 555- 562.

二级参考文献11

  • 1李晓磊 钱积新.人工鱼群算法:自下而上的寻优模式[A]..过程系统工程年会论文集[C].,2001.76~82.
  • 2Bertsekas D P.Constrained optimization and Lagrange multipliers methods[M].New York:Academic Press,1982.
  • 3Di Pillo G.Exact penalty methods[C]//Spedicato E.Algorithms for Continuous Optimization:The State of the Art.Boston:Kluwer Academic Press,1994:209-253.
  • 4Di Pillo G,Lucidi S.An augmented Lagrangian function with improved exactness properties[J].SIAM J Optim,2001,12(2):376-406.
  • 5Di Pillo G,Lucidi S.On exact augmented Lagrangian functions in nonlinear programming[C]//Di Pillo G,Giannessi F.Nonlinear Optisization and Applications.New York:Plenum Press,1996:85-100.
  • 6Hestenes M R.Multiplier and gradient methods[J].J Optim Theory Appl,1969,4:303-320.
  • 7Hestenes M R.Optimization theory:The finite dimensional case[M].New York:John Wiley and Sons,1975.
  • 8Lucidi S.New results on a class of exact augmented Lagrangians[J].J Optim Theory Appl,1988,58(2):259-282.
  • 9Powell M J D.A method for nonlinear constraints in minimization problems[C]//Fletcher R.Optimization.New York:Academic Press,1969:283-298.
  • 10Di Pillo G,Grippo L.A new class of augmented Lagrangians in nonlinear programming[J].SIAM J Control Optim,1979,17(5):618-628.

共引文献140

同被引文献46

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部