摘要
基于传统晶闸管单扩散p层杂质浓度分布很难协调阻断电压、通流能力、通态压降、反向恢复电荷和关断时间之间的矛盾,无法使特高压晶闸管的通流能力由4 000 A提高到4 500 A。对特高压晶闸管采用低浓度p-层穿透、高浓度p+层发射极结构设计进行了理论分析并进行了工艺实验,测试结果表明,特高压晶闸管在不损失阻断电压(≥8 500 V)前提下,芯片厚度减薄0.05 mm、通态压降下降0.11 V,反向恢复电荷、dV/dt耐量、di/dt耐量、关断时间等得到优化,研制了6英寸(1英寸=2.54 cm)4 500 A/8 500 V特高压晶闸管,并成功应用于±800 kV/7 200 MW特高压直流输电工程中。
The impurity concentration distribution of single diffusion p layer based on the traditional thyristor is difficult to coordinate the contradictions of blocking voltage,current capacity,reverse recovery charge and turn-off time. It can not make the current capacity of the ultra-high voltage thyristor improve from 4 000 A to 4 500 A. The low concentration ultra high voltage thyristor with p-layer punchthrough and high p+emitter structure was designed and processed. The results indicate that the chip thickness decreases 0. 05 mm and on-state voltage drops 0. 11 V without losing blocking voltage( ≥ 8 500 V) of the ultra-high voltage thyristor. Also the reverse recovery charge,dV/dt tolerance,di /dt tolerance and turn-off time are optimized. A 6 inches 4 500 A /8 500 V ultra-high voltage thyristor was developed and successfully applied to the ± 800 kV /7 200 MW ultra-high voltage direct current( UHVDC) transmission project
出处
《半导体技术》
CAS
CSCD
北大核心
2014年第10期752-757,共6页
Semiconductor Technology
基金
国家科技支撑计划(2006BAA02A26)
关键词
阻断电压
通流能力
通态压降
反向恢复电荷
关断时间
blocking voltage
current capacity
on-state voltage drop
reverse recovery charge
turn-off time